Skip to main content

Chitin and Its Derivatives

Applications in Biomedical Devices

  • Reference work entry
  • First Online:
Polysaccharides of Microbial Origin
  • 1356 Accesses

Abstract

Chitin and chitosan are well-known natural polymers that have been considered a sustainable feedstock for the production of high-value biomaterials. In particular, the wide availability of the main sources of chitin, e.g., squid pens, shrimp, crab shells, insects, and fungal cell walls, is associated to different methodologies for its extraction, namely, classical methods based on strong acids, alkali, and enzymes, or alternative ones like the use of ionic liquids and/or natural deep eutectic solvents. The latter method offers opportunities to extract and process chitin directly from the raw materials, preserving the chitin qualities. The global market of chitin is continuously increasing across different fields, namely, the textile industry, packaging, technology, and biomedical field. In the biomedical field, many chitin and chitosan-based matrices, namely, membranes, hydrogels, nano−/microfibers, and scaffolds have been produced using various methodologies such as blending chitin and chitosan with other natural/synthetic polymers (such as alginate, gelatin, polycaprolactone), metals and/or ceramics (such as HAp, SiO2, TiO2, ZrO2). Besides, the functional groups of chitin and chitosan can be modified for the development of a broad range of derivatives with a wide range of applications. The achieved architectures have the suitable physicochemical and biological performance for applications in wound repair, bone regeneration, cartilage repair, and infectious diseases. In this chapter is performed an overview of the recent research on the extraction, production, and applications of chitin and chitosan-based matrices envisaging their biomedical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(H-HTCC)-NS/MS:

N-(2-hydroxypropyl)-3-trimethyl chitosan

[Amim]Br:

1-allyl-3-methylimidazolium bromide

[Amim]Cl:

1-allyl-3-methylimidazolium chloride

[Bmim]Cl:

1-butyl-3-methylimidazolium chloride

[Bmim]OAc:

1-butyl-3-methylimidazolium acetate

[Emim]OAc:

1-ethyl-3-methylimidazolium acetate

AIBN:

2,2′-azobisisobutyronitrile

Bio-IL:

Biocompatible ionic liquids

BMSC:

Bone marrow-derived stem cells

C-CBM:

Collagen—chitin biomimetic membrane

CDI:

1,1-carbonyldiimidazole

CMCS:

Carboxymethyl chitosan sulfate

COP:

Collagen peptide

DA:

Degree of acetylation

DD:

Degree of deacetylation

DES:

Deep eutectic solvent

ECM:

Extracellular matrix

EGCG:

Epigallocatechin gallate

ESCs:

Epidermal stem cells

GAG:

Glycosaminoglycans

Hap:

Hydroxyapatite

ILs:

Ionic liquids

MSCs:

Mesenchymal stem cells

MTGase:

Microbial transglutaminase

MW:

Molecular weight

NACOSs:

N-acetyl chitooligosaccharides

NS/MS:

Nano/microspheres

PCL:

Polycrapolactone

PEI:

Polyethylenimine

SF:

Silk fibroin

TEOS:

Tetraethylorthosilicate

TGF-β:

Transforming growth factor- β

References

  • Abdelrahman T, Newton H. Wound dressings: principles and practice. Surgery (Oxford). 2011;29(10):491–5.

    Article  Google Scholar 

  • Adhikari HS, Yadav PN. Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int J Biomater. 2018;2018:2952085.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aguilar A, Zein N, Harmouch E, Hafdi B, Bornert F, Offner D, et al. Application of chitosan in bone and dental engineering. Molecules. 2019;24(16):3009.

    Article  CAS  PubMed Central  Google Scholar 

  • Alves NM, Mano JF. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol. 2008;43(5):401–14.

    Article  CAS  PubMed  Google Scholar 

  • Antabe R, Ziegler BR. Diseases, emerging and infectious. In: International Encyclopedia of Human Geography. Amsterdam: Cambridge, MA; 2020. p. 389–91.

    Chapter  Google Scholar 

  • Anthony J, Brennecke J, Holbrey J, Maginn E, Mantz P, Trulove A, et al. Physicochemical properties of ionic liquids. In: Wasserscheid P, Welton T, editors. Ionic liquids in synthesis. Weinheim: Wiley-VCH; 2002. p. 41–126.

    Chapter  Google Scholar 

  • Arnold ND, Brück WM, Garbe D, Brück TB. Enzymatic modification of native chitin and conversion to specialty chemical products. Mar Drugs. 2020;18(2):93.

    Article  CAS  PubMed Central  Google Scholar 

  • Barber PS, Griggs CS, Bonner JR, Rogers RD. Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells. Green Chem. 2013;15(3):601–7.

    Article  CAS  Google Scholar 

  • Bastiaens L, Soetemans L, D'Hondt E, Elst K. Sources of chitin and chitosan and their isolation. In: van den Broek L, Boeriu C, editors. Chitin and chitosan: properties and application. Hoboken: Wiley; 2019. p. 1–34.

    Google Scholar 

  • Beck SC, Jiang T, Nair LS, Laurencin CT. Chapter 2: Chitosan for bone and cartilage regenerative engineering. In: Jennings JA, Bumgardner JD, editors. Chitosan based biomaterials volume 2. Amsterdam: Woodhead Publishing; 2017. p. 33–72.

    Chapter  Google Scholar 

  • Chang S-H, Lin H-TV WG-J, Tsai GJ. pH effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr Polym. 2015;134:74–81.

    Article  CAS  PubMed  Google Scholar 

  • Chang S-H, Wu C-H, Tsai G-J. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr Polym. 2018;181:1026–32.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhu C, Fan D, Liu B, Ma X, Duan Z, et al. A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility. J Biomed Mater Res A. 2011;99A(3):395–409.

    Article  CAS  Google Scholar 

  • Chen H, Cui S, Zhao Y, Zhang C, Zhang S, Peng X. Grafting chitosan with Polyethylenimine in an ionic liquid for efficient gene delivery. PLoS One. 2015;10(4):e0121817.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Xie F, Li X, Chen L. Ionic liquids for the preparation of biopolymer materials for drug/gene delivery: a review. Green Chem. 2018;20(18):4169–200.

    Article  CAS  Google Scholar 

  • Chitin Market Size Chitin Market Size. With impact of domestic and global market top players, share, future challenges, revenue, demand, industry growth and top players analysis to 2026 [press release]. 2020.

    Google Scholar 

  • Ciejka J, Wolski K, Nowakowska M, Pyrc K, Szczubiałka K. Biopolymeric nano/microspheres for selective and reversible adsorption of coronaviruses. Mater Sci Eng C. 2017;76:735–42.

    Article  CAS  Google Scholar 

  • Dai T, Tanaka M, Huang Y-Y, Hamblin MR. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti-Infect Ther. 2011;9(7):857–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daraghmeh NH, Chowdhry BZ, Leharne SA, Al Omari MM, Badwan AA. Chapter 2: Chitin. In: Brittain HG, editor. Profiles of drug substances, excipients and related methodology, vol. 36. Amsterdam: Academic Press; 2011. p. 35–102.

    Google Scholar 

  • Deepthi S, Jayakumar R. Prolonged release of TGF-β from polyelectrolyte nanoparticle loaded macroporous chitin-poly(caprolactone) scaffold for chondrogenesis. Int J Biol Macromol. 2016;93:1402–9.

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Wichers HJ, Govers C. Beneficial health effects of chitin and chitosan. In: Boeriu CG, editor. Chitin and chitosan: properties and applications. Hoboken: Wiley; 2019. p. 145–67.

    Chapter  Google Scholar 

  • El Knidri H, Belaabed R, Addaou A, Laajeb A, Lahsini A. Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromol. 2018;120:1181–9.

    Article  PubMed  Google Scholar 

  • Gomes J, Silva S, Reis R. Exploring the use of choline acetate on the sustainable development of α-chitin-based sponges. ACS Sustain Chem Eng. 2020;8:13507–16.

    Article  CAS  Google Scholar 

  • Hajji S, Younes I, Ghorbel-Bellaaj O, Hajji R, Rinaudo M, Nasri M, et al. Structural differences between chitin and chitosan extracted from three different marine sources. Int J Biol Macromol. 2014;65:298–306.

    Article  CAS  PubMed  Google Scholar 

  • Hirayama H, Yoshida J, Yamamoto K, Kadokawa J-I. Facile acylation of α-chitin in ionic liquid. Carbohydr Polym. 2018;200:567–71.

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Liu M, Yang X, Zhang C, Zhou H, Xie W, et al. Modification of chitosan grafted with collagen peptide by enzyme crosslinking. Carbohydr Polym. 2019;206:468–75.

    Article  CAS  PubMed  Google Scholar 

  • Jing X, Mi H-Y, Wang X-C, Peng X-F, Turng L-S. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan–poly(ε-caprolactone) copolymers for bone tissue engineering. ACS Appl Mater Interfaces. 2015;7(12):6955–65.

    Article  CAS  PubMed  Google Scholar 

  • Kievit FM, Florczyk SJ, Leung MC, Veiseh O, Park JO, Disis ML, et al. Chitosan–alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. Biomaterials. 2010;31(22):5903–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S. Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polymer Sci. 2018;2018:1708172.

    Article  Google Scholar 

  • Kumar PTS, Abhilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R. Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr Polym. 2010;80(3):761–7.

    Article  CAS  Google Scholar 

  • Kuo Y-C, Ku IN. Cartilage regeneration by novel polyethylene oxide/chitin/chitosan scaffolds. Biomacromolecules. 2008;9(10):2662–9.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Tian X, Fan J, Tong H, Ao Q, Wang X. Chitosans for tissue repair and organ three-dimensional (3D) bioprinting. Micromachines (Basel). 2019;10(11):765.

    Article  Google Scholar 

  • Li B, Elango J, Wu W. Recent advancement of molecular structure and biomaterial function of chitosan from marine organisms for pharmaceutical and nutraceutical application. Appl Sci. 2020;10(14):4719.

    Article  CAS  Google Scholar 

  • Liu L, Zhou S, Wang B, Xu F, Sun R. Homogeneous acetylation of chitosan in ionic liquids. J Appl Polym Sci. 2013;129(1):28–35.

    Article  CAS  Google Scholar 

  • LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym. 2016;151:172–88.

    Article  CAS  PubMed  Google Scholar 

  • Lotfi G, Shokrgozar MA, Mofid R, Abbas FM, Ghanavati F, Baghban AA, et al. Biological evaluation (in vitro and in vivo) of Bilayered collagenous coated (Nano electrospun and Solid Wall) chitosan membrane for periodontal guided bone regeneration. Ann Biomed Eng. 2015;44:2132–44.

    Article  PubMed  Google Scholar 

  • Loutfy SA, Elberry MH, Farroh KY, Mohamed HT, Mohamed AA, Mohamed EB, et al. Antiviral activity of chitosan nanoparticles encapsulating curcumin against hepatitis C virus genotype 4a in human hepatoma cell lines. Int J Nanomedicine. 2020;15:2699–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milewska A, Chi Y, Szczepanski A, Barreto-Duran E, Liu K, Liu D, et al. HTCC as a highly effective polymeric inhibitor of SARS-CoV-2 and MERS-CoV. bioRxiv. 2020. https://doi.org/10.1101/2020.03.29.014183.

  • Mine S, Izawa H, Kaneko Y, Kadokawa J-I. Acetylation of α-chitin in ionic liquids. Carbohydr Res. 2009;344(16):2263–5.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Vásquez MJ, Valenzuela-Buitimea EL, Plascencia-Jatomea M, Encinas-Encinas JC, Rodríguez-Félix F, Sánchez-Valdes S, et al. Functionalization of chitosan by a free radical reaction: characterization, antioxidant and antibacterial potential. Carbohydr Polym. 2017;155:117–27.

    Article  PubMed  Google Scholar 

  • Mututuvari TM, Harkins AL, Tran CD. Facile synthesis, characterization, and antimicrobial activity of cellulose-chitosan-hydroxyapatite composite material: a potential material for bone tissue engineering. J Biomed Mater Res A. 2013;101(11):3266–77.

    PubMed  PubMed Central  Google Scholar 

  • Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym. 2009;76(2):167–82.

    Article  CAS  Google Scholar 

  • Muzzarelli RAA. Biomedical exploitation of chitin and chitosan via Mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar Drugs. 2011;9(9):1510–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasiri B, Mashayekhan S. Fabrication of porous scaffolds with decellularized cartilage matrix for tissue engineering application. Biologicals. 2017;48:39–46.

    Article  CAS  PubMed  Google Scholar 

  • Nitta S, Komatsu A, Ishii T, Ohnishi M, Inoue A, Iwamoto H. Fabrication and characterization of water-dispersed chitosan nanofiber/poly(ethylene glycol) diacrylate/calcium phosphate-based porous composites. Carbohydr Polym. 2017;174:1034–40.

    Article  CAS  PubMed  Google Scholar 

  • Panjapheree K, Kamonmattayakul S, Meesane J. Biphasic scaffolds of silk fibroin film affixed to silk fibroin/chitosan sponge based on surgical design for cartilage defect in osteoarthritis. Mater Des. 2018;141:323–32.

    Article  CAS  Google Scholar 

  • Park BK, Kim M-M. Applications of chitin and its derivatives in biological medicine. Int J Mol Sci. 2010;11(12):5152–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JK, Chung MJ, Choi HN, Park YI. Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int J Mol Sci. 2011;12:266–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrick SB, Julia LS, Robin DR. A “green” industrial revolution: using chitin towards transformative technologies. Pure Appl Chem. 2013;85(8):1693–701.

    Article  Google Scholar 

  • Pighinelli L. Methods of chitin production a short review. Am J Biomed Sci Res. 2019;3:307–14.

    Article  Google Scholar 

  • Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34(7):641–78.

    Article  CAS  Google Scholar 

  • Preethi Soundarya S, Haritha Menon A, Viji Chandran S, Selvamurugan N. Bone tissue engineering: scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol. 2018;119:1228–39.

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Wang J. Chitin in rubber based blends and micro composites. In: Visakh PM, editor. Rubber based bionanocomposites: preparation. Cham: Springer International Publishing; 2017. p. 71–107.

    Chapter  Google Scholar 

  • Rasouli R, Barhoum A, Bechelany M, Dufresne A. Nanofibers for biomedical and healthcare applications. Macromol Biosci. 2019;19(2):1800256.

    Article  Google Scholar 

  • Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C. 2017;78:1246–62.

    Article  CAS  Google Scholar 

  • Salah R, Michaud P, Mati F, Harrat Z, Lounici H, Abdi N, et al. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol. 2013;52:333–9.

    Article  CAS  PubMed  Google Scholar 

  • Saravanan S, Leena RS, Selvamurugan N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;93:1354–65.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JE, Mosheiff R. Tissue engineering approaches for bone repair: concepts and evidence. Injury. 2011;42(6):609–13.

    Article  PubMed  Google Scholar 

  • Shamshina JL. Chitin in ionic liquids: historical insights into the polymer's dissolution and isolation. A review. Green Chem. 2019;21(15):3974–93.

    Article  CAS  Google Scholar 

  • Shamshina JL, Gurau G, Block LE, Hansen LK, Dingee C, Walters A, et al. Chitin–calcium alginate composite fibers for wound care dressings spun from ionic liquid solution. J Mater Chem B. 2014;2(25):3924–36.

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Mukesh C, Mondal D, Prasad K. Dissolution of α-chitin in deep eutectic solvents. RSC Adv. 2013;3(39):18149–55.

    Article  CAS  Google Scholar 

  • Shen Y, Dai L, Li X, Liang R, Guan G, Zhang Z, et al. Epidermal stem cells cultured on collagen-modified chitin membrane induce in situ tissue regeneration of full-thickness skin defects in mice. PLoS One. 2014;9(2):e87557.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva SS, Motta A, Rodrigues MT, Pinheiro AFM, Gomes ME, Mano JF, et al. Novel Genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules. 2008;9(10):2764–74.

    Article  CAS  PubMed  Google Scholar 

  • Silva SS, Duarte ARC, Carvalho AP, Mano JF, Reis RL. Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomater. 2011;7(3):1166–72.

    Article  CAS  PubMed  Google Scholar 

  • Silva SS, Santos TC, Cerqueira MT, Marques AP, Reys LL, Silva TH, et al. The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications. Green Chem. 2012;14(5):1463–70.

    Article  CAS  Google Scholar 

  • Silva SS, Duarte ARC, Oliveira JM, Mano JF, Reis RL. Alternative methodology for chitin–hydroxyapatite composites using ionic liquids and supercritical fluid technology. J Bioact Compat Polym. 2013a;28(5):481–91.

    Article  Google Scholar 

  • Silva SS, Duarte ARC, Mano JF, Reis RL. Design and functionalization of chitin-based microsphere scaffolds. Green Chem. 2013b;15(11):3252–8.

    Article  CAS  Google Scholar 

  • Silva SS, Mano JF, Reis RL. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem. 2017;19(5):1208–20.

    Article  CAS  Google Scholar 

  • Silva SS, Gomes JM, Rodrigues LC, Reis RL. Marine-derived polymers in ionic liquids: architectures development and biomedical applications. Mar Drugs. 2020;18(7):346.

    Article  CAS  PubMed Central  Google Scholar 

  • Singh R, Shitiz K, Singh A. Chitin and chitosan: biopolymers for wound management. Int Wound J. 2017;14(6):1276–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sofi HS, Ashraf R, Beigh MA, Sheikh FA. Scaffolds fabricated from natural polymers/composites by electrospinning for bone tissue regeneration. Adv Exp Med Biol. 2018;1078:49–78.

    Article  CAS  PubMed  Google Scholar 

  • Synowiecki J, Al-Khateeb NA. Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr. 2003;43(2):145–71.

    Article  CAS  PubMed  Google Scholar 

  • Tan YN, Lee PP, Chen WN. Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream. AMB Express. 2020;10(1):17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao F, Cheng Y, Shi X, Zheng H, Du Y, Xiang W, et al. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr Polym. 2020;230:115658.

    Article  CAS  PubMed  Google Scholar 

  • Uto T, Idenoue S, Yamamoto K, Kadokawa JI. Understanding dissolution process of chitin crystal in ionic liquids: theoretical study. PCCP. 2018;20(31):20669–77.

    Article  CAS  PubMed  Google Scholar 

  • Varlamov V, Il’ina A, Shagdarova B, Lunkov A, Mysyakina I. Chitin/chitosan and its derivatives: fundamental problems and practical approaches. Biochem Mosc. 2020;85:154–76.

    Article  CAS  Google Scholar 

  • Vicente FA, Bradić B, Novak U, Likozar B. α-Chitin dissolution, N-deacetylation and valorization in deep eutectic solvents. Biopolymers. 2020;111(5):e23351.

    Article  CAS  PubMed  Google Scholar 

  • Vishwanath V, Pramanik K, Biswas A. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. J Biomater Sci Polym Ed. 2016;27(7):657–74.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zheng L, Li C, Zhang D, Xiao Y, Guan G, et al. A novel and simple procedure to synthesize chitosan-graft-polycaprolactone in an ionic liquid. Carbohydr Polym. 2013;94(1):505–10.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, et al. Chitosan derivatives and their application in biomedicine. Int J Mol Sci. 2020;21(2):487.

    Article  PubMed Central  Google Scholar 

  • Wu Y, Sasaki T, Irie S, Sakurai K. A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer. 2008;49(9):2321–7.

    Article  CAS  Google Scholar 

  • Xie J, Peng C, Zhao Q, Wang X, Yuan H, Yang L, et al. Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. Acta Biomater. 2016;29:365–79.

    Article  CAS  PubMed  Google Scholar 

  • Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015;13(3):1133–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younes I, Ghorbel-Bellaaj O, Chaabouni M, Rinaudo M, Souard F, Vanhaverbeke C, et al. Use of a fractional factorial design to study the effects of experimental factors on the chitin deacetylation. Int J Biol Macromol. 2014;70:385–90.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li C, Wang Q, Zhao ZK. Efficient hydrolysis of chitosan in ionic liquids. Carbohydr Polym. 2009;78(4):685–9.

    Article  CAS  Google Scholar 

  • Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Han W, Chen H, Tu M, Huan S, Miao G, et al. Fabrication and in vivo osteogenesis of biomimetic poly(propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering. J Mater Sci Mater Med. 2012;23(2):517–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors especially acknowledge financial support from Portuguese FCT (PD/BD/135247/2017, SFRH/BPD/93697/2013 and CEECIND/01306/2018). This work is also financially supported by Ph.D. program in Advanced Therapies for Health (PATH) (PD/00169/2013), FCT R&D&I projects with references PTDC/BII-BIO/31570/2017, PTDC/CTM-CTM//29813/2017, and R&D&I Structured Projects with reference NORTE-01-0145-FDER-000021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone S. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Silva, S.S., Gomes, J.M., Rodrigues, L.C., Reis, R.L. (2022). Chitin and Its Derivatives. In: Oliveira, J.M., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-42215-8_13

Download citation

Publish with us

Policies and ethics