Skip to main content

IR Liver-Directed Therapies for HCC

  • Reference work entry
  • First Online:
Hepato-Pancreato-Biliary Malignancies
  • 661 Accesses

Abstract

There are a number of noninvasive interventional therapies available for treatment of HCC for resectable and unresectable disease including directed energy and embolic techniques. Treatment via microwave, RF and cryoablation are discussed along with embolization treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang H, Naghavi M, et al. Global burden of disease liver cancer collaboration 2015 mortality and causes of death collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–544.

    Google Scholar 

  2. Forner A, Reig ME, de Lope CR, et al. Current strategy for staging and treatment: the BCLC update and future prospects. Semin Liver Dis. 2010;30(01):61–74.

    CAS  Google Scholar 

  3. Mazzaferro V, Bhoori S, Sposito C, et al. Milan criteria in liver transplantation for hepatocellular carcinoma: an evidence-based analysis of 15 years of experience. Liver Transpl. 2011:S44–57.

    Google Scholar 

  4. Heimbach JK, Kulik LM, Finn R, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67:358–80.

    Google Scholar 

  5. Hong K, Georgiades C. Radiofrequency ablation: mechanism of action and devices. J Vasc Interv Radiol. 2010;21:S179–86.

    Google Scholar 

  6. McGahan JP, Browning PD, Brock JM, et al. Hepatic ablation using radiofrequency electrocautery. Investig Radiol. 1990;25:267–70.

    CAS  Google Scholar 

  7. Rossi S, Fornari F, Pathies C, et al. Thermal lesions induced by 480 KHzlocalized current in Guinea pig and pig liver. Tumori. 1990;76:54–7.

    CAS  Google Scholar 

  8. Zhou Y, Zhao Y, Li B, et al. Meta-analysis of radiofrequency ablation versus hepatic resection for small hepatocellular carcinoma. BMC Gastroenterol. 2010;10:78.

    Google Scholar 

  9. Kutlu OC, Chan JA, Aloia TA, Chun YS, Kaseb AO, Passot G, Yamashita S, Vauthey JN, Conrad C. Comparative effectiveness of first-line radiofrequency ablation versus surgical resection and transplantation for patents with early hepatocellular carcinoma. Cancer. 2017;123:1817–27.

    Google Scholar 

  10. Rhim H, Lim HK. Radiofrequency ablation of hepatocellular carcinoma: pros and cons. Gut Liver. 2010;4(Suppl 1):S113–8.

    Google Scholar 

  11. Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr. Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):S192–203. https://doi.org/10.1016/j.jvir.2010.04.007.

    Article  Google Scholar 

  12. Brace CL, Laeseke PF, Sampson LA, Frey TM, van der Weide DW, Lee FT Jr. Microwave ablation with multiple simultaneously powered small-gauge triaxial antennas: results from an in vivo swine liver model. Radiology. 2007;244:151–6.

    Google Scholar 

  13. Huo YR, Eslick GD. Microwave ablation compared to radiofrequency ablation for hepatic lesions: a meta-analysis. J Vasc Interv Radiol. 2015;26:1139–46.

    Google Scholar 

  14. Zhang XG, Zhang ZL, Hu SY, Wang YL. Ultrasound-guided ablative therapy for hepatic malignancies: a comparison of the therapeutic effects of microwave and radiofrequency ablation. Acta Chir Belg. 2014;114:40–5.

    CAS  Google Scholar 

  15. Ohmoto K, Yoshioka N, Tomiyama Y, et al. Comparison of therapeutic effects between radiofrequency ablation and percutaneous microwave coagulation therapy for small hepatocellular carcinomas. J Gastroenterol Hepatol. 2009;24(2):223–7.

    Google Scholar 

  16. Iida H, Aihara T, Ikuta S, Yamanaka N. A comparative study of therapeutic effect between laparoscopic microwave coagulation and laparoscopic radiofrequency ablation. Hepato-Gastroenterology. 2013;60:662–5.

    Google Scholar 

  17. Baust JG, Gage AA, Bjerklund Johansen TE, Baust JM. Mechanisms of cryoablation: clinical consequences on malignant tumors. Cryobiology. 2014;68(1):1–11. https://doi.org/10.1016/j.cryobiol.2013.11.001.

    Article  CAS  Google Scholar 

  18. Song KD. Percutaneous cryoablation for hepatocellular carcinoma. Clin Mol Hepatol. 2016;22(4):509–15.

    Google Scholar 

  19. Wang C, Wang H, Yang W, Hu K, Xie H, Hu KQ, Bai W, Dong Z, Lu Y, Zeng Z, Lou M, Wang H, Gao X, Chang X, An L, Qu J, Li J, Yang Y. Multicenter randomized controlled trial of percutaneous cryoablation versus radiofrequency ablation in hepatocellular carcinoma. Hepatology. 2015;61(5):1579–90.

    Google Scholar 

  20. Miller L, Leor J, Rubinsky B. Cancer cells ablation with irreversible electroporation. Technol Cancer Res Treat. 2005;4:699–705.

    Google Scholar 

  21. Golberg A, Broelsch GF, Bohr S, et al. Non-thermal, pulsed electric field cell ablation: a novel tool for regenerative medicine and scarless skin regeneration. Technology (Singap World Sci). 2013;1:1–8.

    Google Scholar 

  22. Nielsen K, Scheffer HJ, Vieveen JM, et al. Anaesthetic management during open and percutaneous irreversible electroporation. Br J Anaesth. 2014;113(6):985–92.

    CAS  Google Scholar 

  23. Sutter O, Calvo J, N’Kontchou G, Nault J-C, Ourabia R, Nahon P, Ganne-Carrié N, et al. Safety and efficacy of irreversible electroporation for the treatment of hepatocellular carcinoma not amenable to thermal ablation techniques: a retrospective single-center case series. Radiology. 2017;284(3):877–86.

    Google Scholar 

  24. Scheck J, Bruners P, Schindler D, et al. Comparison of chronologic change in the size and contrast-enhancement of ablation zones on CT images after irreversible electroporation and RF ablation. Korean J Radiol. 2018;19:560–7.

    Google Scholar 

  25. Tamura M, et al. Predictors of occlusion of hepatic blood vessels after irreversible electroporation of liver tumors. J Vasc Interv Radiol. 2020;31(12):2033–2042.e1.

    Google Scholar 

  26. Balogh J, Victor D 3rd, Asham EH, et al. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma. 2016;3:41–53.

    Google Scholar 

  27. Llovet JM, Real MI, Montaña X, Planas R, Coll S, Aponte J, Bruix J. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359(9319):1734–9.

    Google Scholar 

  28. Lencioni R, de Baere T, Soulen MC, Rilling WS, Geschwind J-FH. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: a systematic review of efficacy and safety data. Hepatology. 2016;64(1):106–16.

    CAS  Google Scholar 

  29. Lencioni R. Loco-regional treatment of hepatocellular carcinoma. Hepatology. 2010;52:762–77.

    CAS  Google Scholar 

  30. Song JE, Kim DY. Conventional vs drug-eluting beads transarterial chemoembolization for hepatocellular carcinoma. World J Hepatol. 2017;9(18):808–14.

    Google Scholar 

  31. Camma C, Schepis F, Orlando A, Albanese M, Shahied L, Trevisani F, et al. Transarterial chemoembolization for unresectable hepatocellular carcinoma: meta-analysis of randomized controlled trials. Radiology. 2002;224:47–54.

    Google Scholar 

  32. Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37:429–42.

    CAS  Google Scholar 

  33. Raza A, Sood GK. Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World J Gastroenterol. 2014;20(15):4115–27.

    Google Scholar 

  34. Golfieri R, Cappelli A, Cucchetti A, Piscaglia F, Carpenzano M, Peri E, Ravaioli M, D’Errico-Grigioni A, Pinna AD, Bolondi L. Efficacy of selective transarterial chemoembolization in inducing tumor necrosis in small (& lt; 5 cm) hepatocellular carcinomas. Hepatology. 2011;53:1580–9.

    Google Scholar 

  35. Song MJ, Chun HJ, Song do S, Kim HY, Yoo SH, Park CH, Bae SH, Choi JY, Chang UI, Yang JM. Comparative study between doxorubicin-eluting beads and conventional transarterial chemoembolization for treatment of hepatocellular carcinoma. J Hepatol. 2012;57:1244–50.

    CAS  Google Scholar 

  36. Lammer J, Malagari K, Vogl T, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol. 2010;33(1):41–52.

    Google Scholar 

  37. Golfieri R, Giampalma E, Renzulli M, et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma. Br J Cancer. 2014;111(2):255–64.

    CAS  Google Scholar 

  38. Schicho A, Hellerbrand C, Kruger K, et al. Impact of different embolic agents for transarterial chemoembolization (TACE) procedures on systemic vascular endothelial growth factor (VEGF) levels. J Clin Transl Hepatol. 2016;4(4):288–92.

    Google Scholar 

  39. Yamaguchi R, Yano H, Iemura A, Ogasawara S, Haramaki M, Kojiro M. Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology. 1998;28(1):68–77.

    CAS  Google Scholar 

  40. Wu X, et al. Comparison of drug-eluting embolics versus conventional transarterial chemoembolization for the treatment of patients with unresectable hepatocellular carcinoma: a cost-effectiveness analysis. J Vasc Interv Radiol. 2021;32(1):2–12.e1.

    Google Scholar 

  41. Lee KH, Liapi E, Vossen JA, et al. Distribution of iron oxide-containing Embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: evaluation with MR imaging and implication for therapy. J Vasc Interv Radiol. 2008;19:1490–6.

    Google Scholar 

  42. Brown KT, Do RK, Gonen M, Covey AM, et al. Randomized trial of hepatic artery embolization for hepatocellular carcinoma using doxorubicin-eluting microspheres compared with embolization with microspheres alone. J Clin Oncol. 2016;34(17):2046–53.

    CAS  Google Scholar 

  43. Tong AK, Kao YH, Too CW, Chin KF, Ng DC, Chow PK. Yttrium-90 hepatic radioembolization: clinical review and current techniques in interventional radiology and personalized dosimetry. Br J Radiol. 2016;89(1062):20150943. https://doi.org/10.1259/bjr.20150943.

    Article  Google Scholar 

  44. Sangro B, Carpanese L, Cianni R, Golfieri R, Gasparini D, et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology. 2011;54(3):868–78.

    Google Scholar 

  45. Tohme S, et al. Yttrium-90 radioembolization as a bridge to liver transplantation: a single-institution experience. J Vasc Interv Radiol. 2013;24(11):1632–8.

    Google Scholar 

  46. Zhang Y, Li Y, Ji H, Zhao X, Lu H. Transarterial Y90 radioembolization versus chemoembolization for patients with hepatocellular carcinoma: a meta-analysis. Biosci Trends. 2015;9(5):289–98.

    CAS  Google Scholar 

  47. Buscarini L, Buscarini E, Di Stasi M, et al. Percutaneous radiofrequency thermal ablation combined with transcatheter arterial embolization in the treatment of large hepatocellular carcinoma. Ultraschall Med. 1999;20(2):47–53.

    CAS  Google Scholar 

  48. Mahvash A, Murthy R, Odisio BC, Raghav KP, Girard L, Cheung S, et al. Yttrium-90 resin microspheres as an adjunct to sorafenib in patients with unresectable hepatocellular carcinoma. J Hepatocell Carcinoma. 2016;3:1–7.

    Google Scholar 

  49. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Google Scholar 

  50. Fuchs K, Bize PE, Dormond O, Denys A, Doelker E, Borchard G, et al. Drug-eluting beads loaded with antiangiogenic agents for chemoembolization: in vitro sunitinib loading and release and in vivo pharmacokinetics in an animal model. J Vasc Interv Radiol. 2014;25(3):379–87. 387.e1–2

    Google Scholar 

  51. Bize P, Duran R, Fuchs K, Dormond O, Namur J, Decosterd LA, et al. Antitumoral effect of sunitinib-eluting beads in the rabbit VX2 tumor model. Radiology. 2016;280(2):425–35.

    Google Scholar 

  52. Denys A, Czuczman P, Grey D, Bascal Z, Whomsley R, Kilpatrick H, et al. Vandetanib-eluting radiopaque beads: in vivo pharmacokinetics, safety and toxicity evaluation following swine liver embolization. Theranostics. 2017;7(8):2164–76.

    CAS  Google Scholar 

  53. Sakr OS, Berndt S, Carpentier G, Cuendet M, Jordan O, Borchard G. Arming embolic beads with anti-VEGF antibodies and controlling their release using LbL technology. J Control Release. 2016;224:199–207.

    CAS  Google Scholar 

  54. Ludwig JM, Gai Y, Sun L, Xiang G, Zeng D, Kim HS. SW43-DOX ± loading onto drug-eluting bead, a potential new targeted drug delivery platform for systemic and locoregional cancer treatment – an in vitro evaluation. Mol Oncol. 2016;10(7):1133–45.

    CAS  Google Scholar 

  55. Yoo SY, Badrinath N, Woo HY, Heo J. Oncolytic virus-based immunotherapies for hepatocellular carcinoma. Mediat Inflamm. 2017;2017:5198798.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Choudhri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Choudhri, A. (2022). IR Liver-Directed Therapies for HCC. In: Doria, C., Rogart, J.N. (eds) Hepato-Pancreato-Biliary Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-41683-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41683-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41682-9

  • Online ISBN: 978-3-030-41683-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics