Skip to main content

The Role of the Environment in Hormone-Related Cancers

  • Reference work entry
  • First Online:
Environmental Endocrinology and Endocrine Disruptors

Part of the book series: Endocrinology ((ENDOCR))

  • 300 Accesses

Abstract

Pathogenesis of cancer is a complex process influenced by multiple factors, including lifestyle and environment. The increased incidence of hormone-related cancers (breast, uterus, prostate) is supposed to be linked to the substantial exposure to environmental endocrine disruptors (EDs; dioxins, pesticides, polychlorinated biphenyls, bisphenols, phthalates, etc.). Such associations have been indicated by epidemiological studies; the data particularly support the link to developmental exposures to EDs. EDs can dysregulate hormone signaling and cell functions through multifaceted molecular and biochemical mechanisms, and experimental studies reveal possible mechanisms of their oncogenic effects. Specifically, since most of the EDs are xenoestrogens, the estrogenic modes of action are partially responsible for their roles in carcinogenesis. Moreover, epigenetic mechanisms are supposed to be involved in adverse effects of EDs on future generations. In addition to EDs, the impact of other chemicals (heavy metals, cigarette smoke components, ethanol) on the onset of cancer should not be underestimated. Obesity, a substantial health problem worldwide, is considered a significant lifestyle risk factor for the endocrine-related cancers. Adipose tissue can contribute to excessive estrogen supply in the body, and adipokines can interfere with signaling pathways involved in malignant cell transformation. Further, circadian disruptions caused by exposure to artificial light at night and shift work may affect carcinogenesis in hormone-related tissues. Although the precise contribution and the mechanisms involved in the actions of these factors to cancer are not completely elucidated, the research findings can help us better understand endocrine-related cancer risk factors and identify possible ways to reduce their impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahearn TU, Peisch S, Pettersson A, Ebot EM, Zhou CK, Graff RE, et al. Expression of IGF/insulin receptor in prostate cancer tissue and progression to lethal disease. Carcinogenesis. 2018;39(12):1431–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ataollahi MR, Sharifi J, Paknahad MR, Paknahad A. Breast cancer and associated factors: a review. J Med Life. 2015;8(Spec Iss 4):6–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism. 2019;92:121–35.

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj P, Au CC, Benito-Martin A, Ladumor H, Oshchepkova S, Moges R, et al. Estrogens and breast cancer: mechanisms involved in obesity-related development, growth and progression. J Steroid Biochem Mol Biol. 2019;189:161–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang SC, Chen HC, Sun CW, Chen YA, Wang YH, Chiang CJ, et al. Phthalate exposure and prostate cancer in a population-based nested case-control study. Environ Res. 2020;181:108902.

    Article  CAS  PubMed  Google Scholar 

  • Constantine GD, Kessler G, Graham S, Goldstein SR. Increased incidence of endometrial cancer following the women’s health initiative: an assessment of risk factors. J Womens Health (Larchmt). 2019;28(2):237–43.

    Article  PubMed  Google Scholar 

  • Darbre PD, Harvey PW. Parabens can enable hallmarks and characteristics of cancer in human breast epithelial cells: a review of the literature with reference to new exposure data and regulatory status. J Appl Toxicol. 2014;34(9):925–38.

    Article  CAS  PubMed  Google Scholar 

  • De Flora S, Micale RT, La MS, Izzotti A, D’Agostini F, Camoirano A, et al. Upregulation of clusterin in prostate and DNA damage in spermatozoa from bisphenol A-treated rats and formation of DNA adducts in cultured human prostatic cells. Toxicol Sci. 2011;122(1):45–51.

    Article  PubMed  Google Scholar 

  • Del Pup L, Mantovani A, Luce A, Cavaliere C, Facchini G, Di Francia R, et al. Endocrine disruptors and female cancer: informing the patients (review). Oncol Rep. 2015;34(1):3–11.

    Article  PubMed  Google Scholar 

  • Del Pup L, Mantovani A, Cavaliere C, Facchini G, Luce A, Sperlongano P, et al. Carcinogenetic mechanisms of endocrine disruptors in female cancers (review). Oncol Rep. 2016;36(2):603–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Donato M, Cernera G, Giovannelli P, Galasso G, Bilancio A, Migliaccio A, et al. Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Mol Cell Endocrinol. 2017;457:35–42.

    Article  PubMed  Google Scholar 

  • Feinberg J, Albright B, Black J, Lu L, Passarelli R, Gysler S, et al. Ten-year comparison study of type 1 and 2 endometrial cancers: risk factors and outcomes. Gynecol Obstet Investig. 2019;84(3):290–7.

    Article  Google Scholar 

  • Florian CP, Mansfield SR, Schroeder JR. Differences in GPR30 regulation by chlorotriazine herbicides in human breast cells. Biochem Res Int. 2016;2016:2984081.

    Article  PubMed  PubMed Central  Google Scholar 

  • Forte M, Di Lorenzo M, Carrizzo A, Valiante S, Vecchione C, Laforgia V, et al. Nonylphenol effects on human prostate non tumorigenic cells. Toxicology. 2016;357–358:21–32.

    Article  PubMed  Google Scholar 

  • Gao H, Yang BJ, Li N, Feng LM, Shi XY, Zhao WH, et al. Bisphenol A and hormone-associated cancers: current progress and perspectives. Medicine (Baltimore). 2015;94(1):e211.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Estevez L, Moreno-Bueno G. Updating the role of obesity and cholesterol in breast cancer. Breast Cancer Res. 2019;21(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Loffredo CA, Mitra PS, Trnovec T, Palkovicova Murinova L, Sovcikova E, et al. PCB exposure and potential future cancer incidence in Slovak children: an assessment from molecular finger printing by ingenuity pathway analysis (IPA®) derived from experimental and epidemiological investigations. Environ Sci Pollut Res Int. 2018;25(17):16493–507.

    Article  CAS  PubMed  Google Scholar 

  • Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JY, Wang MZ, Wang MS, Sun T, Wei FH, Yu XT, et al. The undervalued effects of polychlorinated biphenyl exposure on breast cancer. Clin Breast Cancer. 2020;20(1):12–8.

    Article  CAS  PubMed  Google Scholar 

  • Hafezi SA, Abdel-Rahman WM. The endocrine disruptor bisphenol A (BPA) exerts a wide range of effects in carcinogenesis and response to therapy. Curr Mol Pharmacol. 2019;12(3):230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Hu C, Zhang C, Zhang M, Long S, Cao Z. Role of adiponectin in prostate cancer. Int Braz J Urol. 2019;45(2):220–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kispert S, McHowat J. Recent insights into cigarette smoking as a lifestyle risk factor for breast cancer. Breast Cancer (Dove Med Press). 2017;9:127–32.

    CAS  PubMed  Google Scholar 

  • Knower KC, To SQ, Leung YK, Ho SM, Clyne CD. Endocrine disruption of the epigenome: a breast cancer link. Endocr Relat Cancer. 2014;21(2):T33–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosnik MB, Reif DM. Determination of chemical-disease risk values to prioritize connections between environmental factors, genetic variants, and human diseases. Toxicol Appl Pharmacol. 2019;379:114674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krstev S, Knutsson A. Occupational risk factors for prostate cancer: a meta-analysis. J Cancer Prev. 2019;24(2):91–111.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallozzi M, Leone C, Manurita F, Bellati F, Caserta D. Endocrine disrupting chemicals and endometrial cancer: an overview of recent laboratory evidence and epidemiological studies. Int J Environ Res Public Health. 2017;14(3):E334.

    Article  Google Scholar 

  • Modzelewska P, Chludzinska S, Lewko J, Reszec J. The influence of leptin on the process of carcinogenesis. Contemp Oncol (Pozn). 2019;23(2):63–8.

    CAS  PubMed  Google Scholar 

  • Peisch SF, Van Blarigan EL, Chan JM, Stampfer MJ, Kenfield SA. Prostate cancer progression and mortality: a review of diet and lifestyle factors. World J Urol. 2017;35(6):867–74.

    Article  CAS  PubMed  Google Scholar 

  • Peremiquel-Trillas P, Benavente Y, Martin-Bustamante M, Casabonne D, Perez-Gomez B, Gomez-Acebo I, et al. Alkylphenolic compounds and risk of breast and prostate cancer in the MCC-Spain study. Environ Int. 2019;122:389–99.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Deben S, Gonzalez-Martin R, Palomar A, Quinonero A, Salsano S, Dominguez F. Copper and lead exposures disturb reproductive features of primary endometrial stromal and epithelial cells. Reprod Toxicol. 2020;93:106–17.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Solis MA, Maya-Nunez G, Casas-Gonzalez P, Olivares A, Aguilar-Rojas A. Effects of the lifestyle habits in breast cancer transcriptional regulation. Cancer Cell Int. 2016;16:7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pernar CH, Ebot EM, Wilson KM, Mucci LA. The epidemiology of prostate cancer. Cold Spring Harb Perspect Med. 2018;8(12):a030361.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pezzuto A, Citarella F, Croghan I, Tonini G. The effects of cigarette smoking extracts on cell cycle and tumor spread: novel evidence. Future Sci OA. 2019;5(5):FSO394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prins GS, Birch L, Tang WY, Ho SM. Developmental estrogen exposures predispose to prostate carcinogenesis with aging. Reprod Toxicol. 2007;23(3):374–82.

    Article  CAS  PubMed  Google Scholar 

  • Prins GS, Calderon-Gierszal EL, Hu WY. Stem cells as hormone targets that lead to increased cancer susceptibility. Endocrinology. 2015;156(10):3451–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quagliariello V, Rossetti S, Cavaliere C, Di Palo R, Lamantia E, Castaldo L, et al. Metabolic syndrome, endocrine disruptors and prostate cancer associations: biochemical and pathophysiological evidences [published correction appears in Oncotarget. 2017 Sep 22;8(37):62816]. Oncotarget. 2017;8(18):30606–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol. 2017;233(3):R109–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray A, Fornsaglio J, Dogan S, Hedau S, Naik D, De A. Gynaecological cancers and leptin: a focus on the endometrium and ovary. Facts Views Vis Obgyn. 2018;10(1):5–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers KM, Udesky JO, Rudel RA, Brody JG. Environmental chemicals and breast cancer: an updated review of epidemiological literature informed by biological mechanisms. Environ Res. 2018;160:152–82.

    Article  CAS  PubMed  Google Scholar 

  • Russart KLG, Nelson RJ. Light at night as an environmental endocrine disruptor. Physiol Behav. 2018;190:82–9.

    Article  CAS  PubMed  Google Scholar 

  • Rutkowska AZ, Szybiak A, Serkies K, Rachon D. Endocrine disrupting chemicals as potential risk factor for estrogen-dependent cancers. Pol Arch Med Wewn. 2016;126(7–8):562–70.

    PubMed  Google Scholar 

  • Scsukova S, Rollerova E, Bujnakova MA. Impact of endocrine disrupting chemicals on onset and development of female reproductive disorders and hormone-related cancer. Reprod Biol. 2016;16(4):243–54.

    Article  PubMed  Google Scholar 

  • Shafei A, Ramzy MM, Hegazy AI, Husseny AK, El-Hadary UG, Taha MM, Mosa AA. The molecular mechanisms of action of the endocrine disrupting chemical bisphenol A in the development of cancer. Gene. 2018;647:235–43.

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MF, Hasan N, Soto AM, Sonnenschein C. Environmental endocrine disruptors: effects on the human male reproductive system. Rev Endocr Metab Disord. 2015;16(4):341–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption. Life Sci. 2017;173:94–106.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang Y, Song Q, Wu J, Zhao Y, Yao S, et al. In utero and lactational exposure to di(2-ethylhexyl) phthalate increased the susceptibility of prostate carcinogenesis in male offspring. Reprod Toxicol. 2017;69:60–7.

    Article  CAS  PubMed  Google Scholar 

  • World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Diet, nutrition, physical activity and prostate cancer. Available at dietandcancerreport.org.

  • Yaguchi T. The endocrine disruptor bisphenol A promotes nuclear ERRγ translocation, facilitating cell proliferation of grade I endometrial cancer cells via EGF-dependent and EGF-independent pathways. Mol Cell Biochem. 2019;452(1–2):41–50.

    Article  CAS  PubMed  Google Scholar 

  • Zimta AA, Schitcu V, Gurzau E, Stavaru C, Manda G, Szedlacsek S, Berindan-Neagoe I. Biological and molecular modifications induced by cadmium and arsenic during breast and prostate cancer development. Environ Res. 2019;178:108700.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency under contract no. APVV-18-0150 and VEGA project nos. 2/0074/18 and 2/0162/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alzbeta Bujnakova Mlynarcikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bujnakova Mlynarcikova, A., Scsukova, S. (2023). The Role of the Environment in Hormone-Related Cancers. In: Pivonello, R., Diamanti-Kandarakis, E. (eds) Environmental Endocrinology and Endocrine Disruptors . Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-030-39044-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39044-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39043-3

  • Online ISBN: 978-3-030-39044-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics