Skip to main content

The Role of the Environment in Testicular Dysgenesis Syndrome

  • Reference work entry
  • First Online:
Environmental Endocrinology and Endocrine Disruptors

Abstract

In the last 50 years a significant progressive decline of male reproductive health has been documented, with increasing occurrence of semen quality impairment and of some interlinked male genital abnormalities, such as hypospadias, cryptorchidism, and testicular germ-cell cancer, which probably share a common origin during prenatal life and are therefore grouped in a unique pathological condition named testicular dysgenesis syndrome. Since in animal studies endocrine disrupting compounds exerting estrogenic and/or anti-androgenic effects have been demonstrated to significantly impair male reproductive function, a potential etiological role in the occurrence of testicular dysgenesis syndrome has also been postulated. Human studies focusing on the potential role of endocrine disrupting compounds in the development of testicular dysgenesis syndrome are clearly based on prenatal exposure, mainly and heterogeneously assessed by quantification of these compounds in maternal samples at various pregnancy stages; nevertheless, studies are fragmented and very often do not account for multiple exposures, therefore commonly resulting in controversial results. This chapter aimed at providing a summary of available animal and human evidence concerning the association between prenatal exposure to endocrine disrupting compounds, including compounds with estrogenic (diethylstilbestrol, bisphenol A), anti-androgenic (phthalates, pesticides, heavy metals), and mixed estrogenic and anti-androgenic (pesticides dichlorodiphenyltrichloroethane and dichlorodiphenyldichloroethylene, flame retardants, polychlorinated biphenyls, dioxins) properties, and the development of specific components of testicular dysgenesis syndrome, particularly, hypospadias, cryptorchidism, and testicular germ-cell cancer, by outlining their effect per se, independently on genetic and lifestyle factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abduljabbar M, et al. Mutations of the AMH type II receptor in two extended families with persistent Mullerian duct syndrome: lack of phenotype/genotype correlation. Horm Res Paediatr. 2012;77(5):291–7.

    Article  CAS  PubMed  Google Scholar 

  • Adami HO, et al. Testicular cancer in nine northern European countries. Int J Cancer. 1994;59(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  • Adegoke EO, Rahman MS, Pang MG. Bisphenols threaten male reproductive health via testicular cells. Front Endocrinol (Lausanne). 2020;11:624.

    Article  PubMed  Google Scholar 

  • Andersen AG, et al. High frequency of sub-optimal semen quality in an unselected population of young men. Hum Reprod. 2000;15(2):366–72.

    Article  CAS  PubMed  Google Scholar 

  • Andersen HR, et al. Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environ Health Perspect. 2008;116(4):566–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Asnake S, et al. 1,2-Dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH)-mediated steroid hormone receptor activation and gene regulation in chicken LMH cells. Environ Toxicol Chem. 2014;33(4):891–9.

    Article  CAS  PubMed  Google Scholar 

  • Asnake S, et al. The brominated flame retardants TBP-AE and TBP-DBPE antagonize the chicken androgen receptor and act as potential endocrine disrupters in chicken LMH cells. Toxicol In Vitro. 2015;29(8):1993–2000.

    Article  CAS  PubMed  Google Scholar 

  • Auger J, et al. Decline in semen quality among fertile men in Paris during the past 20 years. N Engl J Med. 1995;332(5):281–5.

    Article  CAS  PubMed  Google Scholar 

  • Barisic M, et al. Mitosis. Microtubule detyrosination guides chromosomes during mitosis. Science. 2015;348(6236):799–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barteczko KJ, Jacob MI. The testicular descent in human. Origin, development and fate of the gubernaculum Hunteri, processus vaginalis peritonei, and gonadal ligaments. Adv Anat Embryol Cell Biol. 2000;156, III:–X, 1–98.

    Google Scholar 

  • Baskin LS. Hypospadias and urethral development. J Urol. 2000;163(3):951–6.

    Article  CAS  PubMed  Google Scholar 

  • Bay K, et al. Testicular dysgenesis syndrome: possible role of endocrine disrupters. Best Pract Res Clin Endocrinol Metab. 2006;20(1):77–90.

    Article  CAS  PubMed  Google Scholar 

  • Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14(8):518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggs ML, Baer A, Critchlow CW. Maternal, delivery, and perinatal characteristics associated with cryptorchidism: a population-based case-control study among births in Washington state. Epidemiology. 2002;13(2):197–204.

    Article  PubMed  Google Scholar 

  • Boisen KA, et al. Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries. Lancet. 2004;363(9417):1264–9.

    Article  CAS  PubMed  Google Scholar 

  • Bojesen A, et al. Morbidity in Klinefelter syndrome: a Danish register study based on hospital discharge diagnoses. J Clin Endocrinol Metab. 2006;91(4):1254–60.

    Article  CAS  PubMed  Google Scholar 

  • Bojesen SE, et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet. 2013;45(4):371–84. 384e1-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brucker-Davis F, et al. Cryptorchidism at birth in Nice area (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod. 2008;23(8):1708–18.

    Article  CAS  PubMed  Google Scholar 

  • Bujan L, et al. Time series analysis of sperm concentration in fertile men in Toulouse, France between 1977 and 1992. BMJ. 1996;312(7029):471–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cancer prevention during early life. Centers for Disease Control and Prevention. 2021.

    Google Scholar 

  • Carbone P, et al. Cryptorchidism and hypospadias in the Sicilian district of Ragusa and the use of pesticides. Reprod Toxicol. 2006;22(1):8–12.

    Article  CAS  PubMed  Google Scholar 

  • Carbone P, et al. The possible role of endocrine disrupting chemicals in the aetiology of cryptorchidism and hypospadias: a population-based case-control study in rural Sicily. Int J Androl. 2007;30(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  • Carlsen E, et al. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305(6854):609–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceccatelli R, et al. Gene expression and estrogen sensitivity in rat uterus after developmental exposure to the polybrominated diphenylether PBDE 99 and PCB. Toxicology. 2006;220(2–3):104–16.

    Article  CAS  PubMed  Google Scholar 

  • Cederroth CR, et al. Estrogen receptor alpha is a major contributor to estrogen-mediated fetal testis dysgenesis and cryptorchidism. Endocrinology. 2007;148(11):5507–19.

    Article  CAS  PubMed  Google Scholar 

  • Chevalier N, et al. A negative correlation between insulin-like peptide 3 and bisphenol A in human cord blood suggests an effect of endocrine disruptors on testicular descent during fetal development. Hum Reprod. 2015;30(2):447–53.

    Article  CAS  PubMed  Google Scholar 

  • Chilvers C, et al. Apparent doubling of frequency of undescended testis in England and Wales in 1962–81. Lancet. 1984;2(8398):330–2.

    Article  CAS  PubMed  Google Scholar 

  • Christiansen S, et al. Combined exposure to anti-androgens causes markedly increased frequencies of hypospadias in the rat. Int J Androl. 2008;31(2):241–8.

    Article  CAS  PubMed  Google Scholar 

  • Chung CC, et al. Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat Genet. 2013;45(6):680–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colin E, et al. Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: galloway-Mowat syndrome. Am J Hum Genet. 2014;95(6):637–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook MB, Trabert B, McGlynn KA. Organochlorine compounds and testicular dysgenesis syndrome: human data. Int J Androl. 2011;34(4 Pt 2):e68–84; discussion e84–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couse JF, Korach KS. Estrogen receptor-alpha mediates the detrimental effects of neonatal diethylstilbestrol (DES) exposure in the murine reproductive tract. Toxicology. 2004;205(1–2):55–63.

    Article  CAS  PubMed  Google Scholar 

  • Crockford GP, et al. Genome-wide linkage screen for testicular germ cell tumour susceptibility loci. Hum Mol Genet. 2006;15(3):443–51.

    Article  CAS  PubMed  Google Scholar 

  • Czene K, Lichtenstein P, Hemminki K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish family-cancer database. Int J Cancer. 2002;99(2):260–6.

    Article  CAS  PubMed  Google Scholar 

  • Dalgaard MD, et al. A genome-wide association study of men with symptoms of testicular dysgenesis syndrome and its network biology interpretation. J Med Genet. 2012;49(1):58–65.

    Article  PubMed  Google Scholar 

  • Damgaard IN, et al. Persistent pesticides in human breast milk and cryptorchidism. Environ Health Perspect. 2006;114(7):1133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey RA, Grossmann M. Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev. 2016;37(1):3–15.

    PubMed  PubMed Central  Google Scholar 

  • DDT and related compounds. In: Nicholas PC, Rosenfeld PE, editors. Handbook of Pollution Prevention and Cleaner Production: best practices in the agrochemical industry. William Andrew Publishing; 2011.

    Google Scholar 

  • De Coster S, van Larebeke N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Public Health. 2012;2012:713696.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Smith AJ, et al. Human genes involved in copy number variation: mechanisms of origin, functional effects and implications for disease. Cytogenet Genome Res. 2008;123(1–4):17–26.

    Article  PubMed  Google Scholar 

  • De Toni L, et al. Testicular cancer: genes, environment, hormones. Front Endocrinol (Lausanne). 2019;10:408.

    Article  PubMed  Google Scholar 

  • DES Research Update 1999: current knowledge, future directions. 1999. National Institutes of Health.

    Google Scholar 

  • Dimich-Ward H, et al. Reproductive effects of paternal exposure to chlorophenate wood preservatives in the sawmill industry. Scand J Work Environ Health. 1996;22(4):267–73.

    Article  CAS  PubMed  Google Scholar 

  • Edsgard D, et al. Genome-wide assessment of the association of rare and common copy number variations to testicular germ cell cancer. Front Endocrinol (Lausanne). 2013;4:2.

    Article  PubMed  Google Scholar 

  • Emmen JM, et al. Involvement of insulin-like factor 3 (Insl3) in diethylstilbestrol-induced cryptorchidism. Endocrinology. 2000;141(2):846–9.

    Article  CAS  PubMed  Google Scholar 

  • Enangue Njembele AN, Bailey JL, Tremblay JJ. In vitro exposure of Leydig cells to an environmentally relevant mixture of organochlorines represses early steps of steroidogenesis. Biol Reprod. 2014;90(6):118.

    Article  PubMed  Google Scholar 

  • Faroon OM, et al. Carcinogenic effects of polychlorinated biphenyls. Toxicol Ind Health. 2001;17(2):41–62.

    Article  CAS  PubMed  Google Scholar 

  • Ferlin A, et al. Androgen receptor gene CAG and GGC repeat lengths in cryptorchidism. Eur J Endocrinol. 2005;152(3):419–25.

    Article  CAS  PubMed  Google Scholar 

  • Ferlin A, et al. Genetic alterations associated with cryptorchidism. JAMA. 2008;300(19):2271–6.

    Article  CAS  PubMed  Google Scholar 

  • Ferlin A, et al. Association of testicular germ cell tumor with polymorphisms in estrogen receptor and steroid metabolism genes. Endocr Relat Cancer. 2010;17(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez MF, et al. Bisphenol A and other phenols in human placenta from children with cryptorchidism or hypospadias. Reprod Toxicol. 2016;59:89–95.

    Article  CAS  PubMed  Google Scholar 

  • Flores-Luevano S, et al. [DDT/DDE concentrations and risk of hypospadias. Pilot case-control study]. Salud Publica Mex. 2003;45(6):431–8.

    Google Scholar 

  • Foresta C, et al. Role of hormones, genes, and environment in human cryptorchidism. Endocr Rev. 2008;29(5):560–80.

    Article  CAS  PubMed  Google Scholar 

  • Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol. 2019;116:135–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Rodriguez J, et al. Exposure to pesticides and cryptorchidism: geographical evidence of a possible association. Environ Health Perspect. 1996;104(10):1090–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25(38):5220–7.

    Article  CAS  PubMed  Google Scholar 

  • Giannandrea F, et al. Effect of endogenous and exogenous hormones on testicular cancer: the epidemiological evidence. Int J Dev Biol. 2013;57(2–4):255–63.

    Article  CAS  PubMed  Google Scholar 

  • Gore AC, et al. EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1–E150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gundy S, et al. Increased predisposition to cancer in brothers and offspring of testicular tumor patients. Pathol Oncol Res. 2004;10(4):197–203.

    Article  PubMed  Google Scholar 

  • Hanna N, Einhorn LH. Testicular cancer: a reflection on 50 years of discovery. J Clin Oncol. 2014;32(28):3085–92.

    Article  CAS  PubMed  Google Scholar 

  • Hardell L, et al. In utero exposure to persistent organic pollutants in relation to testicular cancer risk. Int J Androl. 2006;29(1):228–34.

    Article  CAS  PubMed  Google Scholar 

  • He HG, Han CH, Zhang W. A mouse model of hypospadias induced by estradiol benzoate. Cell Biochem Biophys. 2015;73(3):589–92.

    Article  CAS  PubMed  Google Scholar 

  • Hemminki K, Chen B. Familial risks in testicular cancer as aetiological clues. Int J Androl. 2006;29(1):205–10.

    Article  PubMed  Google Scholar 

  • Jensen TK, et al. Semen quality among Danish and Finnish men attempting to conceive. The Danish first pregnancy planner study team. Eur J Endocrinol. 2000;142(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  • Jiang JT, et al. Prenatal exposure to di-n-butyl phthalate (DBP) differentially alters androgen cascade in undeformed versus hypospadiac male rat offspring. Reprod Toxicol. 2016;61:75–81.

    Article  CAS  PubMed  Google Scholar 

  • Jinks RN, et al. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73. Brain. 2015;138(Pt 8):2173–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jobling MS, et al. Effects of di(n-butyl) phthalate exposure on foetal rat germ-cell number and differentiation: identification of age-specific windows of vulnerability. Int J Androl. 2011;34(5 Pt 2):e386–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DG. The paradox of E2F1: oncogene and tumor suppressor gene. Mol Carcinog. 2000;27(3):151–7.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen N, et al. East-west gradient in semen quality in the Nordic-Baltic area: a study of men from the general population in Denmark, Norway. Estonia Finland Hum Reprod. 2002;17(8):2199–208.

    Article  PubMed  Google Scholar 

  • Josso N, et al. The persistent mullerian duct syndrome: a rare cause of cryptorchidism. Eur J Pediatr. 1993;152(Suppl 2):S76–8.

    Article  PubMed  Google Scholar 

  • Jouannet P, et al. Semen quality and male reproductive health: the controversy about human sperm concentration decline. APMIS. 2001;109(5):333–44.

    Article  CAS  PubMed  Google Scholar 

  • Klip H, et al. Hypospadias in sons of women exposed to diethylstilbestrol in utero: a cohort study. Lancet. 2002;359(9312):1102–7.

    Article  CAS  PubMed  Google Scholar 

  • Krausz C, et al. Absence of mutations involving the INSL3 gene in human idiopathic cryptorchidism. Mol Hum Reprod. 2000;6(4):298–302.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen DG, et al. Evidence that active demethylation mechanisms maintain the genome of carcinoma in situ cells hypomethylated in the adult testis. Br J Cancer. 2014;110(3):668–78.

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen W, et al. Two new loci and gene sets related to sex determination and cancer progression are associated with susceptibility to testicular germ cell tumor. Hum Mol Genet. 2015;24(14):4138–46.

    Article  CAS  PubMed  Google Scholar 

  • La Merrill MA, et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol. 2020;16(1):45–57.

    Article  PubMed  Google Scholar 

  • Ladu S, et al. E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer. Gastroenterology. 2008;135(4):1322–32.

    Article  CAS  PubMed  Google Scholar 

  • Landero-Huerta DA, et al. Epigenetic and risk factors of testicular germ cell tumors: a brief review. Front Biosci (Landmark Ed). 2017;22(7):1073–98.

    Article  CAS  PubMed  Google Scholar 

  • Lilienthal H, et al. Effects of developmental exposure to 2,2,4,4,5-pentabromodiphenyl ether (PBDE-99) on sex steroids, sexual development, and sexually dimorphic behavior in rats. Environ Health Perspect. 2006;114(2):194–201.

    Article  CAS  PubMed  Google Scholar 

  • Litchfield K, et al. Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours. Nat Commun. 2015;6:5973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litchfield K, et al. Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor. Nat Genet. 2017;49(7):1133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longnecker MP, et al. Maternal serum level of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene and risk of cryptorchidism, hypospadias, and polythelia among male offspring. Am J Epidemiol. 2002;155(4):313–22.

    Article  PubMed  Google Scholar 

  • Lymperi S, Giwercman A. Endocrine disruptors and testicular function. Metabolism. 2018;86:79–90.

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Viveiros MM. Depletion of pericentrin in mouse oocytes disrupts microtubule organizing center function and meiotic spindle organization. Mol Reprod Dev. 2014;81(11):1019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma T, et al. Effects of In Utero Exposure to Di-n-Butyl Phthalate on Testicular Development in Rat. Int J Environ Res Public Health. 2017;14(10).

    Google Scholar 

  • Main KM, et al. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect. 2006;114(2):270–6.

    Article  CAS  PubMed  Google Scholar 

  • Main KM, et al. Flame retardants in placenta and breast milk and cryptorchidism in newborn boys. Environ Health Perspect. 2007;115(10):1519–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Main KM, Skakkebaek NE, Toppari J. Cryptorchidism as part of the testicular dysgenesis syndrome: the environmental connection. Endocr Dev. 2009;14:167–73.

    Article  CAS  PubMed  Google Scholar 

  • Mamoulakis C, et al. Genetic analysis of the human insulin-like 3 gene: absence of mutations in a Greek paediatric cohort with testicular maldescent. Andrologia. 2014;46(9):986–96.

    Article  CAS  PubMed  Google Scholar 

  • Martin O, et al. Testicular dysgenesis syndrome and the estrogen hypothesis: a quantitative meta-analysis. Cien Saude Colet. 2008;13(5):1601–18.

    Article  PubMed  Google Scholar 

  • Martino-Andrade AJ, Chahoud I. Reproductive toxicity of phthalate esters. Mol Nutr Food Res. 2010;54(1):148–57.

    Article  CAS  PubMed  Google Scholar 

  • Matlai P, Beral V. Trends in congenital malformations of external genitalia. Lancet. 1985;1(8420):108.

    Article  CAS  PubMed  Google Scholar 

  • Mattiske DM, Pask AJ. Endocrine disrupting chemicals in the pathogenesis of hypospadias; developmental and toxicological perspectives. Curr Res Toxicol. 2021;2:179–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGlynn KA, et al. Persistent organochlorine pesticides and risk of testicular germ cell tumors. J Natl Cancer Inst. 2008;100(9):663–71.

    Article  CAS  PubMed  Google Scholar 

  • McGlynn KA, et al. Maternal pregnancy levels of polychlorinated biphenyls and risk of hypospadias and cryptorchidism in male offspring. Environ Health Perspect. 2009;117(9):1472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinnell C, et al. Suppression of androgen action and the induction of gross abnormalities of the reproductive tract in male rats treated neonatally with diethylstilbestrol. J Androl. 2001;22(2):323–38.

    CAS  PubMed  Google Scholar 

  • McKinnell C, et al. Expression of insulin-like factor 3 protein in the rat testis during fetal and postnatal development and in relation to cryptorchidism induced by in utero exposure to di (n-Butyl) phthalate. Endocrinology. 2005;146(10):4536–44.

    Article  CAS  PubMed  Google Scholar 

  • McLachlan JA, Newbold RR, Bullock B. Reproductive tract lesions in male mice exposed prenatally to diethylstilbestrol. Science. 1975;190(4218):991–2.

    Article  CAS  PubMed  Google Scholar 

  • Metzdorff SB, et al. Dysgenesis and histological changes of genitals and perturbations of gene expression in male rats after in utero exposure to antiandrogen mixtures. Toxicol Sci. 2007;98(1):87–98.

    Article  CAS  PubMed  Google Scholar 

  • Mikolajewska K, Stragierowicz J, Gromadzinska J. Bisphenol a – application, sources of exposure and potential risks in infants, children and pregnant women. Int J Occup Med Environ Health. 2015;28(2):209–41.

    PubMed  Google Scholar 

  • Mol NM, et al. Spermaturia and serum hormone concentrations at the age of puberty in boys prenatally exposed to polychlorinated biphenyls. Eur J Endocrinol. 2002;146(3):357–63.

    Article  CAS  PubMed  Google Scholar 

  • Mondal G, et al. Tex14, a Plk1-regulated protein, is required for kinetochore-microtubule attachment and regulation of the spindle assembly checkpoint. Mol Cell. 2012;45(5):680–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mucci LA, et al. Familial risk and heritability of cancer among twins in Nordic countries. JAMA. 2016;315(1):68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mylchreest E, et al. Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to Di(n-butyl) phthalate during late gestation. Toxicol Sci. 2000;55(1):143–51.

    Article  CAS  PubMed  Google Scholar 

  • Nathanson KL, et al. The Y deletion gr/gr and susceptibility to testicular germ cell tumor. Am J Hum Genet. 2005;77(6):1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newbold RR, et al. Proliferative lesions and reproductive tract tumors in male descendants of mice exposed developmentally to diethylstilbestrol. Carcinogenesis. 2000;21(7):1355–63.

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Kanzaki T. Induction of urogenital anomalies and some tumors in the progeny of mice receiving diethylstilbestrol during pregnancy. Cancer Res. 1977;37(4):1099–104.

    CAS  PubMed  Google Scholar 

  • Ostby J, et al. The fungicide procymidone alters sexual differentiation in the male rat by acting as an androgen-receptor antagonist in vivo and in vitro. Toxicol Ind Health. 1999;15(1–2):80–93.

    Article  CAS  PubMed  Google Scholar 

  • Petrovic A, et al. The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J Cell Biol. 2010;190(5):835–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierik FH, et al. Maternal and paternal risk factors for cryptorchidism and hypospadias: a case-control study in newborn boys. Environ Health Perspect. 2004;112(15):1570–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pradhan A, et al. The brominated flame retardant TBECH activates the zebrafish (Danio rerio) androgen receptor, alters gene transcription and causes developmental disturbances. Aquat Toxicol. 2013;142–143:63–72.

    Article  PubMed  Google Scholar 

  • Pradhan A, et al. In silico and biological analysis of anti-androgen activity of the brominated flame retardants ATE, BATE and DPTE in zebrafish. Chem Biol Interact. 2015;233:35–45.

    Article  CAS  PubMed  Google Scholar 

  • Purdue MP, et al. International patterns and trends in testis cancer incidence. Int J Cancer. 2005;115(5):822–7.

    Article  CAS  PubMed  Google Scholar 

  • Radpour R, et al. Association of long polyglycine tracts (GGN repeats) in exon 1 of the androgen receptor gene with cryptorchidism and penile hypospadias in Iranian patients. J Androl. 2007;28(1):164–9.

    Article  CAS  PubMed  Google Scholar 

  • Raghavan R, et al. Pharmacologic and environmental endocrine disruptors in the pathogenesis of hypospadias: a review. Curr Environ Health Rep. 2018;5(4):499–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao CV, et al. Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis. 2009;30(9):1469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao S, et al. Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol. 2010;30(22):5364–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Report on Carcinogens – Diethylstilbestrol, in National Toxicology Program. Department of Health and Human Services. 2021.

    Google Scholar 

  • Restrepo M, et al. Birth defects among children born to a population occupationally exposed to pesticides in Colombia. Scand J Work Environ Health. 1990;16(4):239–46.

    Article  CAS  PubMed  Google Scholar 

  • Richiardi L, et al. Testicular cancer incidence in eight northern European countries: secular and recent trends. Cancer Epidemiol Biomark Prev. 2004;13(12):2157–66.

    Article  Google Scholar 

  • Rignell-Hydbom A, et al. A nested case-control study of intrauterine exposure to persistent organochlorine pollutants and the risk of hypospadias. PLoS One. 2012;7(9):e44767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocca MS, et al. Copy number variations of E2F1: a new genetic risk factor for testicular cancer. Endocr Relat Cancer. 2017;24(3):119–25.

    Article  CAS  PubMed  Google Scholar 

  • Ruark E, et al. Identification of nine new susceptibility loci for testicular cancer, including variants near DAZL and PRDM14. Nat Genet. 2013;45(6):686–9.

    Article  CAS  PubMed  Google Scholar 

  • Sampaio FJ, Favorito LA. Analysis of testicular migration during the fetal period in humans. J Urol. 1998;159(2):540–2.

    Article  CAS  PubMed  Google Scholar 

  • Sathyanarayana S, et al. Measurement and correlates of ano-genital distance in healthy, newborn infants. Int J Androl. 2010;33(2):317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schagdarsurengin U, Steger K. Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health. Nat Rev Urol. 2016;13(10):584–95.

    Article  CAS  PubMed  Google Scholar 

  • Schnack TH, et al. Familial aggregation of cryptorchidism – a nationwide cohort study. Am J Epidemiol. 2008;167(12):1453–7.

    Article  PubMed  Google Scholar 

  • Schug TT, et al. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127(3–5):204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta S, Henry RW. Regulation of the retinoblastoma-E2F pathway by the ubiquitin-proteasome system. Biochim Biophys Acta. 2015;1849(10):1289–97.

    Article  CAS  PubMed  Google Scholar 

  • Sharma T, et al. Heavy metal levels in adolescent and maternal blood: association with risk of hypospadias. ISRN Pediatr. 2014;2014:714234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharpe RM. Hormones and testis development and the possible adverse effects of environmental chemicals. Toxicol Lett. 2001;120(1–3):221–32.

    Article  CAS  PubMed  Google Scholar 

  • Shono T, et al. Scanning electron microscopy shows inhibited gubernacular development in relation to undescended testes in oestrogen-treated mice. Int J Androl. 1996;19(5):263–70.

    Article  CAS  PubMed  Google Scholar 

  • Shono T, et al. Short-time exposure to vinclozolin in utero induces testicular maldescent associated with a spinal nucleus alteration of the genitofemoral nerve in rats. J Pediatr Surg. 2004;39(2):217–9. discussion 217-9

    Article  CAS  PubMed  Google Scholar 

  • Sinclair AW, et al. Diethylstilbestrol-induced mouse hypospadias: “window of susceptibility”. Differentiation. 2016;91(1–3):1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16(5):972–8.

    Article  CAS  PubMed  Google Scholar 

  • Small CM, et al. Maternal exposure to a brominated flame retardant and genitourinary conditions in male offspring. Environ Health Perspect. 2009;117(7):1175–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonne SB, et al. Testicular dysgenesis syndrome and the origin of carcinoma in situ testis. Int J Androl. 2008;31(2):275–87.

    Article  PubMed  Google Scholar 

  • Stadler ZK, et al. Rare de novo germline copy-number variation in testicular cancer. Am J Hum Genet. 2012;91(2):379–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart MK, Mattiske DM, Pask AJ. In utero exposure to both high- and low-dose diethylstilbestrol disrupts mouse genital tubercle development. Biol Reprod. 2018;99(6):1184–93.

    Article  PubMed  Google Scholar 

  • Stoker TE, et al. In vivo and in vitro anti-androgenic effects of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture. Toxicol Appl Pharmacol. 2005;207(1):78–88.

    Article  CAS  PubMed  Google Scholar 

  • Stoll C, et al. Genetic and environmental factors in hypospadias. J Med Genet. 1990;27(9):559–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storgaard L, Bonde JP, Olsen J. Male reproductive disorders in humans and prenatal indicators of estrogen exposure. A review of published epidemiological studies. Reprod Toxicol. 2006;21(1):4–15.

    Article  CAS  PubMed  Google Scholar 

  • Swan SH, Elkin EP, Fenster L. The question of declining sperm density revisited: an analysis of 101 studies published 1934-1996. Environ Health Perspect. 2000;108(10):961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swan SH, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect. 2005;113(8):1056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talsness CE, et al. Components of plastic: experimental studies in animals and relevance for human health. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364(1526):2079–96.

    Article  CAS  Google Scholar 

  • Tan H, et al. Prenatal exposure to atrazine induces cryptorchidism and hypospadias in F1 male mouse offspring. Birth Defects Res. 2021;113(6):469–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133–64. https://doi.org/10.1007/978-3-7643-8340-4_6. PMID: 22945569; PMCID: PMC4144270

  • Togawa K, et al. Parental occupational exposure to heavy metals and welding fumes and risk of testicular germ cell tumors in offspring: a registry-based case-control study. Cancer Epidemiol Biomark Prev. 2016;25(10):1426–34.

    Article  CAS  Google Scholar 

  • Toppari J, Kaleva M, Virtanen HE. Trends in the incidence of cryptorchidism and hypospadias, and methodological limitations of registry-based data. Hum Reprod Update. 2001;7(3):282–6.

    Article  CAS  PubMed  Google Scholar 

  • Toppari J, et al. Cryptorchidism and hypospadias as a sign of testicular dysgenesis syndrome (TDS): environmental connection. Birth Defects Res A Clin Mol Teratol. 2010;88(10):910–9.

    Article  CAS  PubMed  Google Scholar 

  • Toxicological Profile for DDT, DDE, and DDD. Agency for Toxic Substances and Disease Registry. Atlanta; 2002.

    Google Scholar 

  • Toxicological Profile for di-n-octyl Phthalate (DNOP). Agency for Toxic Substances and Disease Registry. Atlanta; 2002.

    Google Scholar 

  • Verhoeven RH, et al. Variation in cancer incidence in northeastern Belgium and southeastern Netherlands seems unrelated to cadmium emission of zinc smelters. Eur J Cancer Prev. 2011;20(6):549–55.

    Article  PubMed  Google Scholar 

  • Vidaeff AC, Sever LE. In utero exposure to environmental estrogens and male reproductive health: a systematic review of biological and epidemiologic evidence. Reprod Toxicol. 2005;20(1):5–20.

    Article  CAS  PubMed  Google Scholar 

  • Virtanen HE, Adamsson A. Cryptorchidism and endocrine disrupting chemicals. Mol Cell Endocrinol. 2012;355(2):208–20.

    Article  CAS  PubMed  Google Scholar 

  • Virtanen HE, Toppari J. Embryology and physiology of testicular development and descent. Pediatr Endocrinol Rev. 2014;11(Suppl 2):206–13.

    PubMed  Google Scholar 

  • Virtanen HE, et al. Associations between congenital cryptorchidism in newborn boys and levels of dioxins and PCBs in placenta. Int J Androl. 2012;35(3):283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, et al. Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor. Nat Genet. 2017;49(7):1141–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidner IS, et al. Cryptorchidism and hypospadias in sons of gardeners and farmers. Environ Health Perspect. 1998;106(12):793–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westergaard T, et al. Cancer risk in fathers and brothers of testicular cancer patients in Denmark. A population-based study. Int J Cancer. 1996;66(5):627–31.

    Article  CAS  PubMed  Google Scholar 

  • White JT, et al. Hypospadias risk from maternal residential exposure to heavy metal hazardous air pollutants. Int J Environ Res Public Health. 2019;16(6).

    Google Scholar 

  • Wiener JS, et al. Androgen receptor gene alterations are not associated with isolated cryptorchidism. J Urol. 1998;160(3 Pt 1):863–5.

    Article  CAS  PubMed  Google Scholar 

  • Wolf C Jr, et al. Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p′-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health. 1999;15(1–2):94–118.

    Article  PubMed  Google Scholar 

  • Xiang J, et al. Prenatal diagnosis and genetic analysis of a fetus with Joubert syndrome. Biomed Res Int. 2018;2018:7202168.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu C, et al. Maternal phthalate exposure during pregnancy and male reproductive disorders: a systematic review and metaanalysis. Turk J Pediatr. 2022;64(2):187–209.

    Article  PubMed  Google Scholar 

  • Znaor A, et al. International variations and trends in testicular cancer incidence and mortality. Eur Urol. 2014;65(6):1095–106.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Pivonello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Auriemma, R.S. et al. (2023). The Role of the Environment in Testicular Dysgenesis Syndrome. In: Pivonello, R., Diamanti-Kandarakis, E. (eds) Environmental Endocrinology and Endocrine Disruptors . Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-030-39044-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39044-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39043-3

  • Online ISBN: 978-3-030-39044-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics