Skip to main content

Microplastic: A New Habitat for Biofilm Communities

  • Reference work entry
  • First Online:
Handbook of Microplastics in the Environment

Abstract

Since half a century, aquatic environments are polluted by plastic debris resulting in its global distribution even to remote systems. Immediately after entering the aquatic environment, microorganisms colonize on plastic surfaces and build up a biofilm, the so-called plastisphere. These epiplastic biofilms have been identified to play a key role in the fate and effects of environmental plastic but knowledge on epiplastic communities is scattered and often derives from laboratory experiments. Aim of this chapter is to shed light on the “triple role of biofilms” in fate and effects of environmental plastic to improve environmentally realistic research and risk assessment: (i) Biofilms can be shaped by the material properties in structure and functions. (ii) In turn biofilms influence the weathering, fate, and potential effects of plastic in the environment. (iii) Finally, plastic represents a new habitat for colonizing microorganisms, which might have system-wide interferences. Therefore, recent literature is reviewed illustrating the mechanisms of the first attachment of microorganisms on surfaces and their implications for weathering and fate of plastic in the environment. Current knowledge on the role of biofilms for partitioning of chemicals in the three-media system of plastic, biofilm, and the water phase is provided. Finally, insights into the potential ecologial role of epiplastic microbial communities for the aquatic environment are given. As plastic pollution has been identified even in remote systems, cross-system investigations considering the role of epiplastic biofilms for aquatic systems differing in vulnerability need to be performed to better inform environmental risk assessment of plastic pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral-Zettler LA, Zettler ER, Slikas B et al (2015) The biogeography of the Plastisphere: implications for policy. Front Ecol Environ 13:541–546

    Article  Google Scholar 

  • Amaral-Zettler LA, Zettler ER, Mincer TJ (2020) Ecology of the plastisphere. Nat Rev Microbiol 18:139–151

    Article  CAS  Google Scholar 

  • Arias-Andres M, Kettner MT, Miki T et al (2018) Microplastics: new substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems. Sci Total Environ 635:1152–1159

    Article  CAS  Google Scholar 

  • Arias-Andres M, Rojas-Jimenez K, Grossart H-P (2019) Collateral effects of microplastic pollution on aquatic microorganisms: an ecological perspective. TrAC Trends Anal Chem 112:234–240

    Article  CAS  Google Scholar 

  • Asshauer KP, Wemheuer B, Daniel R et al (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884

    Article  CAS  Google Scholar 

  • Battin TJ, Besemer K, Bengtsson MM et al (2016) The ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol 14:251–263

    Article  CAS  Google Scholar 

  • Blundell E, Healey MJ, Holton E et al (2016) Characterisation of the protein corona using tunable resistive pulse sensing: determining the change and distribution of a particle’s surface charge. Anal Bioanal Chem 408:5757–5768

    Article  CAS  Google Scholar 

  • Brandon J, Goldstein M, Ohman MD (2016) Long-term aging and degradation of microplastic particles: comparing in situ oceanic and experimental weathering patterns. Mar Pollut Bull 110:299–308

    Article  CAS  Google Scholar 

  • Bryant JA, Clemente TM, Viviani DA et al (2016) Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. mSystems 1:e00024–16

    Google Scholar 

  • Choy CA, Robison BH, Gagne TO et al (2019) The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci Rep 9:1–9

    Google Scholar 

  • Cole M, Lindeque P, Halsband C et al (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597

    Article  CAS  Google Scholar 

  • Cozar A, Echevarria F, Gonzalez-Gordillo JI et al (2014) Plastic debris in the open ocean. Proc Natl Acad Sci U S A 111:10239–10244

    Article  CAS  Google Scholar 

  • Dudek KL, Cruz BN, Polidoro B et al (2020) Microbial colonization of microplastics in the Caribbean Sea. Limnol Oceanogr Lett 5:5–17

    Article  Google Scholar 

  • Dussud C, Meistertzheim AL, Conan P et al (2018) Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ Pollut 236:807–816

    Article  CAS  Google Scholar 

  • Efimova I, Bagaeva M, Bagaev A et al (2018) Secondary microplastics generation in the sea swash zone with coarse bottom sediments: laboratory experiments. Front Mar Sci 5:313

    Google Scholar 

  • Erni-Cassola G, Zadjelovic V, Gibson MI et al (2019) Distribution of plastic polymer types in the marine environment; a meta-analysis. J Hazard Mater 369:691–698

    Article  CAS  Google Scholar 

  • Erni-Cassola G, Wright RJ, Gibson MI et al (2020) Early colonization of weathered polyethylene by distinct Bacteria in marine coastal seawater. Microb Ecol 79:517–526

    Article  CAS  Google Scholar 

  • Flemming HC (1995) Sorption sites in biofilms. Wat Sci Tech 32:27–33

    Google Scholar 

  • Flemming HC (1998) Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polym Degrad Stabil 59:309–315

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  Google Scholar 

  • Fletcher M (1996) Bacterial adhesion: molecular and ecological diversity. Wiley-Liss, New York

    Google Scholar 

  • Galloway TS, Cole M, Lewis C (2017) Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol 1:8

    Article  Google Scholar 

  • Genin SN, Stewart Aitchison J, Grant Allen D (2014) Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content. Bioresour Technol 155:136–143

    Article  CAS  Google Scholar 

  • Harrison JP, Schratzberger M, Sapp M et al (2014) Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol 14:232

    Article  Google Scholar 

  • Hüffer T, Weniger AK, Hofmann T (2018) Sorption of organic compounds by aged polystyrene microplastic particles. Environ Pollut 236:218–225

    Article  Google Scholar 

  • Imran M, Das KR, Naik MM (2019) Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: an emerging health threat. Chemosphere 215:846–857

    Article  CAS  Google Scholar 

  • Jacquin J, Cheng J, Odobel C et al (2019) Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the “plastisphere”. Front Microbiol 10:865

    Article  Google Scholar 

  • Jahnke A, Arp HPH, Escher BI et al (2017) Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ Sci Technol Lett 4:85–90

    Article  CAS  Google Scholar 

  • Jucker BA, Zehnder AJB, Harms H (1998) Quantification of polymer interactions in bacterial adhesion. Environ Sci Technol 32:2909–2915

    Article  CAS  Google Scholar 

  • Kaiser D, Kowalski N, Waniek JJ (2017) Effects of biofouling on the sinking behavior of microplastics. Environ Res Lett 12:124003

    Google Scholar 

  • Kerr A, Cowling MJ (2003) The effects of surface topography on the accumulation of biofouling. Philos Mag 83:2779–2795

    Article  CAS  Google Scholar 

  • Kettner MT, Oberbeckmann S, Labrenz M et al (2019) The eukaryotic life on microplastics in brackish ecosystems. Front Microbiol 10:538

    Article  Google Scholar 

  • Khaled A, Rivaton A, Richard C et al (2018) Phototransformation of plastic containing brominated flame retardants: enhanced fragmentation and release of photoproducts to water and air. Environ Sci Technol 52:11123–11131

    Article  CAS  Google Scholar 

  • Kirstein IV, Kirmizi S, Wichels A et al (2016) Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res 120:1–8

    Article  CAS  Google Scholar 

  • Kirstein IV, Wichels A, Krohne G et al (2018) Mature biofilm communities on synthetic polymers in seawater – specific or general? Mar Environ Res 142:147–154

    Article  CAS  Google Scholar 

  • Kirstein IV, Wichels A, Gullans E et al (2019) The Plastisphere – uncovering tightly attached plastic “specific” microorganisms. PLoS One 14:17

    Article  Google Scholar 

  • Koelmans AA, Bakir A, Burton GA et al (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50:3315–3326

    Article  CAS  Google Scholar 

  • Kooi M, Nes EHV, Scheffer M et al (2017) Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ Sci Technol 51:7963–7971

    Article  CAS  Google Scholar 

  • Kvale KF, Friederike Prowe AE, Oschlies A (2020) A critical examination of the role of marine snow and zooplankton Fecal pellets in removing ocean surface microplastic. Front Mar Sci 6:808

    Google Scholar 

  • Kwon JH, Chang S, Hong SH et al (2017) Microplastics as a vector of hydrophobic contaminants: importance of hydrophobic additives. Integr Environ Assess Manag 13:494–499

    Article  Google Scholar 

  • Leon VM, Garcia-Aguera I, Molto V et al (2019) PAHs, pesticides, personal care products and plastic additives in plastic debris from Spanish Mediterranean beaches. Sci Total Environ 670:672–684

    Article  CAS  Google Scholar 

  • Liao C, Liang X, Soupir ML et al (2015) Cellular, particle and environmental parameters influencing attachment in surface waters: a review. J Appl Microbiol 119:315330

    Article  Google Scholar 

  • Lobelle D, Cunliffe M (2011) Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 62:197–200

    Article  CAS  Google Scholar 

  • Loeb GI, Neihof RA (1975) Marine conditioning films. In: Applied chemistry at protein interfaces. American Chemical Society, Washington, DC, pp 319–335

    Chapter  Google Scholar 

  • Long M, Moriceau B, Gallinari M et al (2015) Interactions between microplastics and phytoplankton aggregates: impact on their respective fates. Mar Chem 175:39–46

    Article  CAS  Google Scholar 

  • Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47

    Article  CAS  Google Scholar 

  • Lynch I, Dawson KA, Lead JR et al (2014) Chapter 4 – Macromolecular coronas and their importance in nanotoxicology and nanoecotoxicology. In: Jamie RL, Eugenia V-J (eds) Frontiers of nanoscience. Elsevier, The Netherlands, pp 127–156

    Google Scholar 

  • Matallana-Surget S, Villette C, Intertaglia L et al (2012) Response to UVB radiation and oxidative stress of marine bacteria isolated from South Pacific Ocean and Mediterranean Sea. J Photochem Photobiol B 117:254–261

    Article  CAS  Google Scholar 

  • Mato Y, Isobe T, Takada H et al (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318–324

    Article  CAS  Google Scholar 

  • Mccormick A, Hoellein TJ, Mason SA et al (2014) Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol 48:11863–11871

    Article  CAS  Google Scholar 

  • Mccormick AR, Hoellein TJ, London MG et al (2016) Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages. Ecosphere 7:201556

    Google Scholar 

  • Miao L, Wang P, Hou J et al (2019) Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci Total Environ 650:2395–2402

    Article  CAS  Google Scholar 

  • Michels J, Stippkugel A, Lenz M et al (2018) Rapid aggregation of biofilm-covered microplastics with marine biogenic particles. Proc Biol Sci 285:20181203

    Google Scholar 

  • Müller A, Becker R, Dorgerloh U et al (2018) The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics. Environ Pollut 240:639–646

    Article  Google Scholar 

  • Nasser F, Lynch I (2016) Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J Proteome 137:45–51

    Article  CAS  Google Scholar 

  • Navarro E, Robinson CT, Behra R (2008) Increased tolerance to ultraviolet radiation (UVR) and cotolerance to cadmium in UVR-acclimatized freshwater periphyton. Limnol Oceanogr 53:1149–1158

    Article  CAS  Google Scholar 

  • Oberbeckmann S, Labrenz M (2020) Marine microbial assemblages on microplastics: diversity, adaptation, and role in degradation. Annu Rev Mar Sci 12:209–232

    Article  Google Scholar 

  • Oberbeckmann S, Loeder MGJ, Gerdts G et al (2014) Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in northern European waters. FEMS Microbiol Ecol 90:478–492

    Article  CAS  Google Scholar 

  • Oberbeckmann S, Kreikemeyer B, Labrenz M (2018) Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol 8:12

    Article  Google Scholar 

  • Ogonowski M, Motiei A, Ininbergs K et al (2018) Evidence for selective bacterial community structuring on microplastics. Environ Microbiol 20:2796–2808

    Article  CAS  Google Scholar 

  • Paerl HW, Carlton RG (1988) Control of nitrogen fixation by oxygen depletion in surface associated microzones. Nature 332:260–262

    Article  CAS  Google Scholar 

  • Pedersen JN, Bombar D, Paerl RW et al (2018) Diazotrophs and N2-fixation associated with particles in coastal estuarine waters. Front Microbiol 9:2759

    Article  Google Scholar 

  • PlasticsEurope (2020) https://www.plasticseurope.org/en/resources/market-data

  • Pompilio A, Piccolomini R, Picciani C et al (2008) Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: the role of cell surface hydrophobicity and motility. FEMS Microbiol Lett 287:41–47

    Article  CAS  Google Scholar 

  • Porter A, Lyons BP, Galloway TS et al (2018) Role of marine snows in microplastic fate and bioavailability. Environ Sci Technol 52:7111–7119

    Article  CAS  Google Scholar 

  • Renner LD, Weibel DB (2011) Physicochemical regulation of biofilm formation. MRS Bull 36:347–355

    Article  CAS  Google Scholar 

  • Riemann L, Farnelid H, Steward GF (2010) Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquat Microb Ecol 61:235–247

    Article  Google Scholar 

  • Rogers KL, Carreres-Calabuig JA, Gorokhova E et al (2020) Micro-by-micro interactions: how microorganisms influence the fate of marine microplastics. Limnol Oceanogr Lett 5:18–36

    Article  CAS  Google Scholar 

  • Romera-Castillo C, Pinto M, Langer TM et al (2018) Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat Commun 9:1430

    Article  Google Scholar 

  • Rummel CD, Jahnke A, Gorokhova E et al (2017) Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett 4:258–267

    Article  CAS  Google Scholar 

  • Seitz F, Rosenfeldt RR, Muller M et al (2016) Quantity and quality of natural organic matter influence the ecotoxicity of titanium dioxide nanoparticles. Nanotoxicology 10:1415–1421

    Article  CAS  Google Scholar 

  • Shen M, Zhu Y, Zhang Y et al (2019) Micro(nano)plastics: unignorable vectors for organisms. Mar Pollut Bull 139:328–331

    Article  CAS  Google Scholar 

  • Sohm JA, Webb EA, Capone DG (2011) Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9:499–508

    Article  CAS  Google Scholar 

  • Song F, Koo H, Ren D (2015) Effects of material properties on bacterial adhesion and biofilm formation. J Dent Res 94:1027–1034

    Article  CAS  Google Scholar 

  • Sunagawa S, Coelho LP, Chaffron S et al (2015) Structure and function of the global ocean microbiome. Science 348:9

    Article  Google Scholar 

  • Taipale SJ, Peltomaa E, Kukkonen JVK et al (2019) Tracing the fate of microplastic carbon in the aquatic food web by compound-specific isotope analysis. Sci Rep 9:19894

    Article  CAS  Google Scholar 

  • Tourinho PS, Koci V, Loureiro S et al (2019) Partitioning of chemical contaminants to microplastics: sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation. Environ Pollut 252:1246–1256

    Article  CAS  Google Scholar 

  • Van Sebille E, Wilcox C, Lebreton L et al (2015) A global inventory of small floating plastic debris. Environ Res Lett 10:124006

    Google Scholar 

  • Velez JFM, Shashoua Y, Syberg K et al (2018) Considerations on the use of equilibrium models for the characterisation of HOC-microplastic interactions in vector studies. Chemosphere 210:359–365

    Article  CAS  Google Scholar 

  • Verran J, Boyd RD (2001) The relationship between substratum surface roughness and microbiological and organic soiling: a review. Biofouling 17:59–71

    Article  Google Scholar 

  • Virsek MK, Lovsin MN, Koren S et al (2017) Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar Pollut Bull 125:301–309

    Article  CAS  Google Scholar 

  • Wang Y, Wang X, Li Y et al (2020) Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics. Chem Eng J 392:123808

    Article  CAS  Google Scholar 

  • Ward JE, Kach DJ (2009) Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar Environ Res 68:137–142

    Article  CAS  Google Scholar 

  • Weinstein JE, Crocker BK, Gray AD (2016) From macroplastic to microplastic: degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ Toxicol Chem 35:1632–1640

    Article  CAS  Google Scholar 

  • Wu CC, Bao LJ, Liu LY et al (2017) Impact of polymer colonization on the fate of organic contaminants in sediment. Environ Sci Technol 51:10555–10561

    Article  CAS  Google Scholar 

  • Wu X, Pan J, Li M et al (2019) Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res 165:114979

    Article  CAS  Google Scholar 

  • Yoshida S, Hiraga K, Takehana T et al (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199

    Article  CAS  Google Scholar 

  • Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “Plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47:7137–7146

    Article  CAS  Google Scholar 

  • Zhang H, Wang J, Zhou B et al (2018) Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: kinetics, isotherms and influencing factors. Environ Pollut 243:1550–1557

    Article  CAS  Google Scholar 

  • Zhang W, Ding W, Li YX et al (2019) Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nat Commun 10:517

    Article  CAS  Google Scholar 

  • Zhu L, Zhao S, Bittar TB et al (2020) Photochemical dissolution of buoyant microplastics to dissolved organic carbon: rates and microbial impacts. J Hazard Mater 383:121065

    Article  CAS  Google Scholar 

  • Zoccarato L, Grossart HP (2019) Relationship between lifestyle and structure of bacterial communities and their functionality in aquatic systems. In: Hurst CJ (ed) The structure and function of aquatic microbial communities. Springer Nature, Switzerland, pp 13–52

    Google Scholar 

  • Zumstein MT, Schintlmeister A, Nelson TF et al (2018) Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci Adv 4:eaas9024

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mechthild Schmitt-Jansen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schmitt-Jansen, M., Lips, S., Schäfer, H., Rummel, C. (2022). Microplastic: A New Habitat for Biofilm Communities. In: Rocha-Santos, T., Costa, M.F., Mouneyrac, C. (eds) Handbook of Microplastics in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-39041-9_22

Download citation

Publish with us

Policies and ethics