Aguinis, H., Gottfredson, R. K., & Culpepper, S. A. (2013). Best-practice recommendations for estimating cross-level interaction effects using multilevel modeling. Journal of Management, 39(6), 1490–1528. https://doi.org/10.1177/0149206313478188
CrossRef
Google Scholar
Asparouhov, T. (2005). Sampling weights in latent variable modeling. Structural Equation Modeling: A Multidisciplinary Journal, 12(3), 411–434. https://doi.org/10.1207/s15328007sem1203_4
CrossRef
Google Scholar
Asparouhov, T. (2006). General multi-level modeling with sampling weights. Communications in Statistics – Theory and Methods, 35(3), 439–460. https://doi.org/10.1080/03610920500476598
CrossRef
Google Scholar
Bellens, K., Van Damme, J., Van Den Noortgate, W., Wendt, H., & Nilsen, T. (2019). Instructional quality: Catalyst or pitfall in educational systems’ aim for high achievement and equity? An answer based on multilevel SEM analyses of TIMSS 2015 data in Flanders (Belgium), Germany, and Norway. Large-scale Assessment in Education, 7(1). https://doi.org/10.1186/s40536-019-0069-2
Berkowitz, R., Moore, H., Astor, R. A., & Benbenishty, R. (2017). A research synthesis of the associations between socioeconomic background, inequality, school climate, and academic achievement. Review of Educational Research, 87(2), 425–469. https://doi.org/10.3102/0034654316669821
CrossRef
Google Scholar
Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). The Guilford Press.
Google Scholar
Cai, T. (2012). Investigation of ways to handle sampling weights for multilevel model analyses. Sociological Methodology, 43(1), 178–219. https://doi.org/10.1177/0081175012460221
CrossRef
Google Scholar
Dedrick, R. F., Ferron, J. M., Hess, M. R., Hogarty, K. Y., Kromrey, J. D., Lang, T. R., … Lee, R. S. (2009). Multilevel modeling: A review of methodological issues and applications. Review of Educational Research, 79(1), 69–102. https://doi.org/10.3102/0034654308325581
CrossRef
Google Scholar
Diez Roux, A. V. (2002). A glossary for multilevel analysis. Journal of Epidemiology and Community Health, 56(8), 588–594. https://doi.org/10.1136/jech.56.8.588
CrossRef
Google Scholar
Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136(1), 103–127. https://doi.org/10.1037/a0018053
CrossRef
Google Scholar
Enders, C. K. (2010). Applied missing data analysis. Guilford Press.
Google Scholar
Enders, C. K., & Mansolf, M. (2018). Assessing the fit of structural equation models with multiply imputed data. Psychological Methods, 23(1), 76–93. https://doi.org/10.1037/met0000102
CrossRef
Google Scholar
Enders, C. K., Mistler, S. A., & Keller, B. T. (2016). Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation. Psychological Methods, 21(2), 222–240. https://doi.org/10.1037/met0000063
CrossRef
Google Scholar
Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychological Methods, 12(2), 121–138. https://doi.org/10.1037/1082-989X.12.2.121
CrossRef
Google Scholar
Garritty, C., Stevens, A., Gartlehner, G., King, V., Kamel, C., & On behalf of the Cochrane Rapid Reviews Methods Group. (2016). Cochrane Rapid Reviews Methods Group to play a leading role in guiding the production of informed high-quality, timely research evidence syntheses. Systematic Reviews, 5(1), 184. https://doi.org/10.1186/s13643-016-0360-z
CrossRef
Google Scholar
Geldhof, G. J., Preacher, K. J., & Zyphur, M. J. (2014). Reliability estimation in a multilevel confirmatory factor analysis framework. Psychological Methods, 19(1), 72–91. https://doi.org/10.1037/a0032138
CrossRef
Google Scholar
Gonzalez, E., & Rutkowski, L. (2010). Principles of multiple matrix booklet designs and parameter recovery in large-scale assessments. IERI Monograph Series: Issues and Methodologies in Large-Scale Assessments, 3, 125–156. Retrieved from http://www.ierinstitute.org/fileadmin/Documents/IERI_Monograph/IERI_Monograph_Volume_03_Chapter_6.pdf
Google Scholar
Grund, S., Lüdtke, O., & Robitzsch, A. (2018). Multiple imputation of missing data for multilevel models: Simulations and recommendations. Organizational Research Methods, 21(1), 111–149. https://doi.org/10.1177/1094428117703686
CrossRef
Google Scholar
Grund, S., Lüdtke, O., & Robitzsch, A. (2019). Missing data in multilevel research. In The handbook of multilevel theory, measurement, and analysis (pp. 365–386). American Psychological Association.
CrossRef
Google Scholar
Heck, R. H., & Thomas, S. L. (2015). An introduction to multilevel modeling techniques: MLM and SEM approaches using Mplus (3rd ed.). Routledge.
CrossRef
Google Scholar
Henry, K. L., & Muthén, B. (2010). Multilevel latent class analysis: An application of adolescent smoking typologies with individual and contextual predictors. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 193–215. https://doi.org/10.1080/10705511003659342
CrossRef
Google Scholar
Hox, J. J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: Techniques and applications (3rd ed.). Routledge.
Google Scholar
Hox, J. J., van Buuren, S., & Jolani, S. (2015). Incomplete multilevel data: Problems and solutions. In J. R. Harring, L. M. Stapleton, & S. N. Beretvas (Eds.), Advances in multilevel modeling for educational research: Addressing practical issues found in real-world applications (pp. 39–62). Information Age Publishing Inc..
Google Scholar
Hsu, H.-Y., Lin, J.-H., Kwok, O.-M., Acosta, S., & Willson, V. (2017). The impact of intraclass correlation on the effectiveness of level-specific fit indices in multilevel structural equation modeling: A Monte Carlo Study. Educational and Psychological Measurement, 77(1), 5–31. https://doi.org/10.1177/0013164416642823
CrossRef
Google Scholar
Jak, S. (2014). Testing strong factorial invariance using three-level structural equation modeling. Frontiers in Psychology, 5(745). https://doi.org/10.3389/fpsyg.2014.00745
Jak, S. (2019). Cross-level invariance in multilevel factor models. Structural Equation Modeling: A Multidisciplinary Journal, 26(4), 607–622. https://doi.org/10.1080/10705511.2018.1534205
CrossRef
Google Scholar
Janis, R. A., Burlingame, G. M., & Olsen, J. A. (2016). Evaluating factor structures of measures in group research: Looking between and within. Group Dynamics: Theory, Research, and Practice, 20(3), 165–180. https://doi.org/10.1037/gdn0000043
CrossRef
Google Scholar
Kaplan, D. (2009). Structural equation modeling: Foundations and extensions (2nd ed.). Sage.
CrossRef
Google Scholar
Kaplan, D., & Su, D. (2016). On matrix sampling and imputation of context questionnaires with implications for the generation of plausible values in large-scale assessments. Journal of Educational and Behavioral Statistics, 41(1), 57–80. https://doi.org/10.3102/1076998615622221
CrossRef
Google Scholar
Kelcey, B., Cox, K., & Dong, N. (2019). Croon’s bias-corrected factor score path analysis for small- to moderate-sample multilevel structural equation models. Organizational Research Methods(0), 1094428119879758. https://doi.org/10.1177/1094428119879758
Kim, E. S., Dedrick, R. F., Cao, C., & Ferron, J. M. (2016). Multilevel factor analysis: Reporting guidelines and a review of reporting practices. Multivariate Behavioral Research, 51(6), 881–898. https://doi.org/10.1080/00273171.2016.1228042
CrossRef
Google Scholar
Kim, J.-S., Anderson, C. J., & Keller, B. (2014). Multilevel analysis of assessment data. In L. Rutkowski, M. V. Davier, & D. Rutkowski (Eds.), Handbook of international large-scale assessment: Background, technical issues, and methods of data analysis (pp. 390–425). CRC Press.
Google Scholar
Klieme, E. (2013). The role of large-scale assessments in research on educational effectiveness and school development. In M. von Davier, E. Gonzalez, I. Kirsch, & K. Yamamoto (Eds.), The role of international large-scale assessments: Perspectives from technology, economy, and educational research (pp. 115–147). Springer.
CrossRef
Google Scholar
Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
Google Scholar
Kuger, S., & Klieme, E. (2016). Dimensions of context assessment. In S. Kuger, E. Klieme, N. Jude, & D. Kaplan (Eds.), Assessing contexts of learning: An international perspective (pp. 3–37). Springer.
CrossRef
Google Scholar
Lachowicz, M. J., Preacher, K. J., & Kelley, K. (2018). A novel measure of effect size for mediation analysis. Psychological Methods, 23(2), 244–261. https://doi.org/10.1037/met0000165
CrossRef
Google Scholar
Lachowicz, M. J., Sterba, S. K., & Preacher, K. J. (2014). Investigating multilevel mediation with fully or partially nested data. Group Processes & Intergroup Relations, 18(3), 274–289. https://doi.org/10.1177/1368430214550343
CrossRef
Google Scholar
Lai, M. H. C., & Kwok, O.-M. (2015). Examining the rule of thumb of not using multilevel modeling: The “Design effect smaller than two” rule. The Journal of Experimental Education, 83(3), 423–438. https://doi.org/10.1080/00220973.2014.907229
CrossRef
Google Scholar
LaRoche, S., Joncas, M., & Foy, P. (2016). Sample design in TIMSS 2015. In M. O. Martin, I. V. S. Mullis, & M. Hooper (Eds.), Methods and procedures in TIMSS 2015 (pp. 3.1–3.38). Boston College, TIMSS & PIRLS International Study Center.
Google Scholar
Laukaityte, I., & Wiberg, M. (2017). Using plausible values in secondary analysis in large-scale assessments. Communications in Statistics – Theory and Methods, 46(22), 11341–11357. https://doi.org/10.1080/03610926.2016.1267764
CrossRef
Google Scholar
Laukaityte, I., & Wiberg, M. (2018). Importance of sampling weights in multilevel modeling of international large-scale assessment data. Communications in Statistics – Theory and Methods, 47(20), 4991–5012. https://doi.org/10.1080/03610926.2017.1383429
CrossRef
Google Scholar
Little, T. D. (2013). Longitudinal structural equation modeling. The Guilford Press.
Google Scholar
Lubke, G. H., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10(1), 21–39. https://doi.org/10.1037/1082-989X.10.1.21
CrossRef
Google Scholar
Lüdtke, O., Marsh, H. W., Robitzsch, A., & Trautwein, U. (2011). A 2 × 2 taxonomy of multilevel latent contextual models: Accuracy–bias trade-offs in full and partial error correction models. Psychological Methods, 16(4), 444–467. https://doi.org/10.1037/a0024376
CrossRef
Google Scholar
Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. (2008). The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies. Psychological Methods, 13(3), 203–229. https://doi.org/10.1037/a0012869
CrossRef
Google Scholar
Lüdtke, O., Robitzsch, A., & Grund, S. (2017). Multiple imputation of missing data in multilevel designs: A comparison of different strategies. Psychological Methods, 22(1), 141–165. https://doi.org/10.1037/met0000096
CrossRef
Google Scholar
Mäkikangas, A., Tolvanen, A., Aunola, K., Feldt, T., Mauno, S., & Kinnunen, U. (2018). Multilevel latent profile analysis with covariates: Identifying job characteristics profiles in hierarchical data as an example. Organizational Research Methods, 21(4), 931–954. https://doi.org/10.1177/1094428118760690
CrossRef
Google Scholar
Marsh, H. W., Dowson, M., Pietsch, J., & Walker, R. (2004). Why multicollinearity matters: A reexamination of relations between self-efficacy, self-concept, and achievement. Journal of Educational Psychology, 96(3), 518–522. https://doi.org/10.1037/0022-0663.96.3.518
CrossRef
Google Scholar
Marsh, H. W., Lüdtke, O., Nagengast, B., Trautwein, U., Morin, A. J. S., Abduljabbar, A. S., & Köller, O. (2012). Classroom climate and contextual effects: Conceptual and methodological issues in the evaluation of group-level effects. Educational Psychologist, 47(2), 106–124. https://doi.org/10.1080/00461520.2012.670488
CrossRef
Google Scholar
Marsh, H. W., Lüdtke, O., Robitzsch, A., Trautwein, U., Asparouhov, T., Muthén, B., & Nagengast, B. (2009). Doubly-latent models of school contextual effects: Integrating multilevel and structural equation approaches to control measurement and sampling error. Multivariate Behavioral Research, 44(6), 764–802. https://doi.org/10.1080/00273170903333665
CrossRef
Google Scholar
Marsh, H. W., Lüdtke, O., Trautwein, U., & Morin, A. J. S. (2009). Classical latent profile analysis of academic self-concept dimensions: Synergy of person- and variable-centered approaches to theoretical models of self-concept. Structural Equation Modeling: A Multidisciplinary Journal, 16(2), 191–225. https://doi.org/10.1080/10705510902751010
CrossRef
Google Scholar
Masyn, K. E. (2013). Latent class analysis and finite mixture modeling. In The Oxford handbook of quantitative methods: Statistical analysis (Vol. 2, pp. 551–611). Oxford University Press.
Google Scholar
Mathieu, J. E., Aguinis, H., Culpepper, S. A., & Chen, G. (2012). Understanding and estimating the power to detect cross-level interaction effects in multilevel modeling. Journal of Applied Psychology, 97(5), 951–966. https://doi.org/10.1037/a0028380
CrossRef
Google Scholar
McNeish, D., & Wentzel, K. R. (2017). Accommodating small sample sizes in three-level models when the third level is incidental. Multivariate Behavioral Research, 52(2), 200–215. https://doi.org/10.1080/00273171.2016.1262236
CrossRef
Google Scholar
Mislevy, R. J. (1991). Randomization-based inference about latent variables from complex samples. Psychometrika, 56(2), 177–196. https://doi.org/10.1007/BF02294457
CrossRef
Google Scholar
Moerbeek, M. (2004). The consequence of ignoring a level of nesting in multilevel analysis. Multivariate Behavioral Research, 39(1), 129–149. https://doi.org/10.1207/s15327906mbr3901_5
CrossRef
Google Scholar
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
CrossRef
Google Scholar
Morin, A. J. S., & Marsh, H. W. (2015). Disentangling shape from level effects in person-centered analyses: An illustration based on university teachers’ multidimensional profiles of effectiveness. Structural Equation Modeling, 22(1), 39–59. https://doi.org/10.1080/10705511.2014.919825
CrossRef
Google Scholar
Morin, A. J. S., Marsh, H. W., Nagengast, B., & Scalas, L. F. (2014). Doubly latent multilevel analyses of classroom climate: An illustration. The Journal of Experimental Education, 82(2), 143–167. https://doi.org/10.1080/00220973.2013.769412
CrossRef
Google Scholar
Muthén, B. O., & Asparouhov, T. (2011). Beyond multilevel regression modeling: Multilevel analysis in a general latent variable framework. In Handbook for advanced multilevel analysis (pp. 15–40). Routledge/Taylor & Francis Group.
Google Scholar
Muthén, B. O., & Asparouhov, T. (2017). Recent methods for the study of measurement invariance with many groups: Alignment and random effects. Sociological Methods & Research, 47(4), 637–664. https://doi.org/10.1177/0049124117701488
CrossRef
Google Scholar
Muthén, B. O., & Satorra, A. (1995). Complex sample data in structural equation modeling. In P. V. Marsden (Ed.), Sociological methodology (pp. 267–316). Blackwell.
Google Scholar
Muthén, L. K., & Muthén, B. O. (1998–2017). Mplus user’s guide (8th ed.). Muthén & Muthén.
Google Scholar
Nagengast, B., & Marsh, H. W. (2011). The negative effect of school-average ability on science self-concept in the UK, the UK countries and the world: The Big-Fish-Little-Pond-Effect for PISA 2006. Educational Psychology, 31(5), 629–656. https://doi.org/10.1080/01443410.2011.586416
CrossRef
Google Scholar
Nagengast, B., & Marsh, H. W. (2012). Big fish in little ponds aspire more: Mediation and cross-cultural generalizability of school-average ability effects on self-concept and career aspirations in science. Journal of Educational Psychology, 104(4), 1033–1053. https://doi.org/10.1037/a0027697
CrossRef
Google Scholar
Nilsen, T., Bloemeke, S., Yang Hansen, K., & Gustafsson, J.-E. (2016). Are school characteristics related to equity? The answer may depend on a country’s developmental level. IEA Policy Briefs, 10. Retrieved from https://www.iea.nl/publications/series-journals/policy-brief/april-2016-are-school-characteristics-related-equity
Nylund-Gibson, K., & Choi, A. Y. (2018). Ten frequently asked questions about latent class analysis. Translational Issues in Psychological Science, 4(4), 440–461. https://doi.org/10.1037/tps0000176
CrossRef
Google Scholar
O’Connell, A. A., Yeomans-Maldonado, G., & McCoach, D. B. (2015). Residual diagnostics and model assessment in a multilevel framework: Recommendations toward best practice. In J. R. Harring, L. M. Stapleton, & S. N. Beretvas (Eds.), Advances in multilevel modeling for educational research: Addressing practical issues found in real-world applications (pp. 97–135). Information Age Publishing, Inc..
Google Scholar
OECD. (2009). PISA data analysis manual: SPSS (2nd ed.). OECD Publishing.
Google Scholar
OECD. (2019a). PISA 2018 results (Vol. I). OECD Publishing.
CrossRef
Google Scholar
OECD. (2019b). TALIS 2018 results (Vol. I). OECD Publishing.
CrossRef
Google Scholar
Preacher, K. J. (2015). Advances in mediation analysis: A survey and synthesis of new developments. Annual Review of Psychology, 66(1), 825–852. https://doi.org/10.1146/annurev-psych-010814-015258
CrossRef
Google Scholar
Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2016). Multilevel structural equation models for assessing moderation within and across levels of analysis. Psychological Methods, 21(2), 189–205. https://doi.org/10.1037/met0000052
CrossRef
Google Scholar
Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods, 15(3), 209–233. https://doi.org/10.1037/a0020141
CrossRef
Google Scholar
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Sage Publications.
Google Scholar
Rohatgi, A., & Scherer, R. (2020). Identifying profiles of students’ school climate perceptions using PISA 2015 data. Large-scale Assessments in Education, 8(1), 4. https://doi.org/10.1186/s40536-020-00083-0
CrossRef
Google Scholar
Rust, K. (2014). Sampling, weighting, and variance estimation in international large-scale assessments. In L. Rutkowski, M. von Davier, & D. Rutkowski (Eds.), Handbook of international large-scale assessment: Background, technical issues, and methods of data analysis (pp. 117–154). CRC Taylor & Francis.
Google Scholar
Rutkowski, L., Gonzalez, E., Joncas, M., & von Davier, M. (2010). International large-scale assessment data: Issues in secondary analysis and reporting. Educational Researcher, 39(2), 142–151. https://doi.org/10.3102/0013189X10363170
CrossRef
Google Scholar
Rutkowski, L., & Zhou, Y. (2014). Using structural equation models to analyze ILSA data. In L. Rutkowski, M. von Davier, & D. Rutkowski (Eds.), Handbook of international large-scale assessment: Background, technical issues, and methods of data analysis (pp. 425–450). CRC Press.
Google Scholar
Ryu, E. (2014a). Factorial invariance in multilevel confirmatory factor analysis. British Journal of Mathematical and Statistical Psychology, 67(1), 172–194. https://doi.org/10.1111/bmsp.12014
CrossRef
Google Scholar
Ryu, E. (2014b). Model fit evaluation in multilevel structural equation models. Frontiers in Psychology, 5(81). https://doi.org/10.3389/fpsyg.2014.00081
Ryu, E. (2015). Multiple group analysis in multilevel structural equation model across level 1 groups. Multivariate Behavioral Research, 50(3), 300–315. https://doi.org/10.1080/00273171.2014.1003769
CrossRef
Google Scholar
Ryu, E., & Mehta, P. (2017). Multilevel factorial invariance in n-Level Structural Equation Modeling (nSEM). Structural Equation Modeling: A Multidisciplinary Journal, 24(6), 936–959. https://doi.org/10.1080/10705511.2017.1324311
CrossRef
Google Scholar
Ryu, E., & West, S. G. (2009). Level-specific evaluation of model fit in multilevel structural equation modeling. Structural Equation Modeling, 16(4), 583–601. https://doi.org/10.1080/10705510903203466
CrossRef
Google Scholar
Satorra, A., & Bentler, P. M. (2010). Ensuring positiveness of the scaled difference Chi-square test statistic. Psychometrika, 75(2), 243–248. https://doi.org/10.1007/s11336-009-9135-y
CrossRef
Google Scholar
Scherer, R., & Gustafsson, J.-E. (2015). Student assessment of teaching as a source of information about aspects of teaching quality in multiple subject domains: An application of multilevel bifactor structural equation modeling. Frontiers in Psychology, 6.
Google Scholar
Scherer, R., Nilsen, T., & Jansen, M. (2016). Evaluating individual students’ perceptions of instructional quality: An investigation of their factor structure, measurement invariance, and relations to educational outcomes. Frontiers in Psychology, 7(110). https://doi.org/10.3389/fpsyg.2016.00110
Scherer, R., Tondeur, J., Siddiq, F., & Baran, E. (2018). The importance of attitudes toward technology for pre-service teachers’ technological, pedagogical, and content knowledge: Comparing structural equation modeling approaches. Computers in Human Behavior, 80, 67–80. https://doi.org/10.1016/j.chb.2017.11.003
CrossRef
Google Scholar
Seidel, T., & Shavelson, R. J. (2007). Teaching effectiveness research in the past decade: The role of theory and research design in disentangling meta-analysis results. Review of Educational Research, 77(4), 454–499. https://doi.org/10.3102/0034654307310317
CrossRef
Google Scholar
Silva, B. C., Bosancianu, C. M., & Littvay, L. (2019). Multilevel structural equation modeling. Sage.
Google Scholar
Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An Introduction to basic and advanced multilevel modeling (2nd ed.). Sage.
Google Scholar
Stapleton, L. M. (2002). The incorporation of sample weights into multilevel structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 9(4), 475–502. https://doi.org/10.1207/S15328007SEM0904_2
CrossRef
Google Scholar
Stapleton, L. M. (2013). Multilevel structural equation modeling with complex sample data. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (2nd ed., pp. 521–562). Information Age Publishing, Inc.
Google Scholar
Stapleton, L. M. (2014). Incorporating sampling weights into single- and multilevel analyses. In L. Rutkowski, M. von Davier, & D. Rutkowski (Eds.), Handbook of international large-scale assessment: Background, technical issues, and methods of data analysis (pp. 363–388). CRC Taylor & Francis.
Google Scholar
Stapleton, L. M., Yang, J. S., & Hancock, G. R. (2016). Construct meaning in multilevel settings. Journal of Educational and Behavioral Statistics, 41(5), 481–520. https://doi.org/10.3102/1076998616646200
CrossRef
Google Scholar
Van den Noortgate, W., Opdenakker, M.-C., & Onghena, P. (2005). The effects of ignoring a level in multilevel analysis. School Effectiveness and School Improvement, 16(3), 281–303. https://doi.org/10.1080/09243450500114850
CrossRef
Google Scholar
von Davier, M., Gonzalez, E., & Mislevy, R. J. (2009). What are plausible values and why are they useful? IERI Monograph Series: Issues and Methodologies in Large-Scale Assessments, 2, 9–36. Retrieved from http://www.ierinstitute.org/fileadmin/Documents/IERI_Monograph/IERI_Monograph_Volume_02_Chapter_01.pdf
Google Scholar
Wang, W., Liao, M., & Stapleton, L. (2019). Incidental second-level dependence in educational survey data with a nested data structure. Educational Psychology Review, 31(3), 571–596. https://doi.org/10.1007/s10648-019-09480-6
CrossRef
Google Scholar
Wu, M. (2005). The role of plausible values in large-scale surveys. Studies in Educational Evaluation, 31(2), 114–128. https://doi.org/10.1016/j.stueduc.2005.05.005
CrossRef
Google Scholar