Skip to main content

Pediatric Radiology in Resource-Limited Settings

  • Living reference work entry
  • First Online:
Evidence-Based Imaging in Pediatrics

Part of the book series: Evidence-Based Imaging ((Evidence-Based Imag.))

  • 22 Accesses

Abstract

Pediatric radiology in resource-limited countries faces significant challenges regarding the availability and accessibility of diagnostic imaging technologies and specialized professional training. However, it is possible to adapt and make the most of existing resources by employing innovative technologies and techniques.

Ultrasound is a valuable tool in these settings, as it is affordable, portable, noninvasive, and can be applied in multiple clinical situations. The use of ultrasound in the evaluation of pediatric diseases has increased in recent years, and it has proven effective in diagnosing and monitoring conditions such as pneumonia, congenital heart diseases, and abdominal trauma, among others.

Computed tomography (CT) can also be an effective alternative in resource-limited countries, especially when magnetic resonance imaging (MRI) is not available. Although MRI is preferable in certain cases, CT can be useful in diagnosing diseases like Dandy Walker complex, retinoblastoma, and in evaluating patients with seizure disorders, among others.

The adoption of innovative digital technologies such as artificial intelligence (AI) and telemedicine can enhance the quality and availability of pediatric radiology worldwide. Telemedicine can provide radiology services to rural areas and improve patient care by enabling radiologists to work remotely. Additionally, AI can improve medical imaging diagnosis by offering computer-aided detection and classification tools, as well as the prioritization of emergency cases.

To ensure the successful adoption of AI in resource-limited countries, a holistic approach that includes clinical radiology education, infrastructure implementation, and phased AI introduction is necessary. This can strengthen the capacity of local radiologists to use AI safely and effectively, and improve the quality of healthcare for pediatric patients.

In summary, pediatric radiology in resource-limited countries can benefit significantly from the adaptive and innovative use of diagnostic imaging technologies and the implementation of telemedicine and artificial intelligence strategies. This can enhance the quality and accessibility of healthcare in these regions, allowing for more efficient diagnosis and treatment for pediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rosenberg M. Global child health: burden of disease, achievements, and future challenges. Curr Probl Pediatr Adolesc Health Care. 2007;1(37):338–62.

    Article  Google Scholar 

  2. Soto G, Pool K-L, Grageda C, Dehaye A, Halliday K, Lam W, Lopez Pino MA, et al. A global mapping of pediatric radiologists and pediatric radiology training. (n.d.). 35.

    Google Scholar 

  3. Shah N. Access to imaging technology in the developing world. In: Mollura DJ, Lungren MP, editors. Radiology in global health [Internet]. New York: Springer New York; 2014 [cited 2020 Nov 14]. p. 13–7. Available from: http://link.springer.com/10.1007/978-1-4614-0604-4_3

  4. Oni T, McGrath N, BeLue R, Roderick P, Colagiuri S, May CR, et al. Chronic diseases and multi-morbidity - a conceptual modification to the WHO ICCC model for countries in health transition. BMC Public Health. 2014;14(1):575.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bhakta N, Force LM, Allemani C, Atun R, Bray F, Coleman MP, et al. Childhood cancer burden: a review of global estimates. Lancet Oncol. 2019;20(1):e42–53.

    Article  PubMed  Google Scholar 

  6. Zühlke L, Lawrenson J, Comitis G, De Decker R, Brooks A, Fourie B, et al. Congenital heart disease in low- and lower-middle-income countries: current status and new opportunities. Curr Cardiol Rep. 2019;21(12):163.

    Article  PubMed  Google Scholar 

  7. Dewan MC, Rattani A, Mekary R, Glancz LJ, Yunusa I, Baticulon RE, et al. Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J Neurosurg. 2018;1:1–15.

    Google Scholar 

  8. Mitchell C. OPS/OMS | Día de la Radiografía: dos tercios de la población mundial no tiene acceso al diagnóstico por imagen [Internet]. Pan American Health Organization / World Health Organization 2012 [cited 2020 Oct 29]. https://www.facebook.com/pahowho. Available from: https://www.paho.org/hq/index.php?option=com_content&view=article&id=7410:2012-dia-radiografia-dos-tercios-poblacion-mundial-no-tiene-acceso-diagnostico-imagen&Itemid=1926&lang=es

  9. Maxfield C, Haberle S, Nijssen-Jordan C. Pediatric imaging in global health radiology: strategies, implementation, and applications. In 2019. p. 225–241.

    Google Scholar 

  10. Kan JH, Orth RC, Yen TA, Schallert EK, Zhang W, Donnelly LF. Impact on quality when pediatric urgent care centers are staffed with radiology technologists. J Am Coll Radiol JACR. 2018;15(12):1717–22.

    Article  PubMed  Google Scholar 

  11. Quan X, Joseph A, Nanda U, Moyano-Smith O, Kanakri S, Ancheta C, et al. Improving pediatric radiography patient stress, mood, and parental satisfaction through positive environmental distractions: a randomized control trial. J Pediatr Nurs Nurs Care Child Fam. 2016;31(1):e11–22.

    Google Scholar 

  12. Cefaratti M, Benninger R, Nguyen R. Implementing a hospital-based radiology nursing orientation program for new graduate pediatric nurses. J Radiol Nurs. 2013;32(4):170–9.

    Article  Google Scholar 

  13. Taghon TA, Bryan YF, Kurth CD. Pediatric radiology sedation and anesthesia. Int Anesthesiol Clin. 2006;44(1):65–79.

    Article  PubMed  Google Scholar 

  14. Draft global strategy on digital health 2020–2024 [Internet]. [cited 2020 Nov 14]. Available from: https://www.who.int/docs/default-source/documents/gs4dh0c510c483a9a42b1834a8f4d276c6352.pdf

  15. National Research Council (US) Committee on. The epidemiological transition: policy and planning implications for developing countries: workshop proceedings. [Internet]. Gribble JN, Preston SH, editors. The Epidemiological Transition: Policy and Planning Implications for Developing Countries: Workshop Proceedings. Washington (DC): National Academies Press (US); 1993 [cited 2021 May 12]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK236450/

  16. Children: improving survival and well-being [Internet]. [cited 2020 Oct 16]. Available from: https://www.who.int/news-room/fact-sheets/detail/children-reducing-mortality

  17. Bhutta ZA, Sommerfeld J, Lassi ZS, Salam RA, Das JK. Global burden, distribution, and interventions for infectious diseases of poverty. Infect Dis Poverty. 2014;31(3):21.

    Article  Google Scholar 

  18. Hansen C, Paintsil E. Infectious diseases of poverty in children: a tale of two worlds. Pediatr Clin N Am. 2016;63(1):37–66.

    Article  Google Scholar 

  19. Children, HIV and AIDS 2019 [Internet]. UNICEF DATA. 2019 [cited 2020 Oct 31]. Available from: https://data.unicef.org/resources/children-hiv-and-aids-global-and-regional-snapshots-2019/

  20. Jeanes AC, Owens CM. Imaging of HIV disease in children. Imaging. 2002;14(1):8–23.

    Article  Google Scholar 

  21. WHO Global Tuberculosis report [Internet]. [cited 2020 Oct 29]. Available from: https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf?ua=1

  22. Sodhi K, Seith Bhalla A, Mahomed N, Laya B. Imaging of thoracic tuberculosis in children: current and future directions. Pediatr Radiol. 2017;1(47):1260–8.

    Article  Google Scholar 

  23. Álvarez P, Castiglione N, Moreno S, Bolpe J. Hydatid disease in children of Buenos Aires Province. Arch Argent Pediatr. 2018;116(3):e476–81.

    PubMed  Google Scholar 

  24. Andronikou S, Welman CJ, Kader E. Classic and unusual appearances of hydatid disease in children. Pediatr Radiol. 2002;32(11):817–28.

    Article  PubMed  Google Scholar 

  25. Singhi P, Singhi S. Neurocysticercosis in children. Indian J Pediatr. 2009;76(5):537–45.

    Article  PubMed  Google Scholar 

  26. Salazar-Schettino PM, Cabrera-Bravo M, Vazquez-Antona C, Zenteno E, Alba-Alvarado MD, Gutierrez ET, et al. Chagas disease in Mexico: report of 14 cases of Chagasic cardiomyopathy in Children. Tohoku J Exp Med. 2016;240(3):243–9.

    Article  PubMed  Google Scholar 

  27. Lee-Felker SA, Thomas M, Felker ER, Traina M, Salih M, Hernandez S, et al. Value of cardiac MRI for evaluation of chronic Chagas disease cardiomyopathy. Clin Radiol. 2016;71(6):618.e1–7.

    Article  CAS  PubMed  Google Scholar 

  28. Alonge O, Khan UR, Hyder AA. Our shrinking globe: implications for child unintentional injuries. Pediatr Clin N Am. 2016;63(1):167–81.

    Article  Google Scholar 

  29. Global Burden of Disease Child, Adolescent Health Collaboration, Kassebaum N, Kyu HH, Zoeckler L, Olsen HE, Thomas K, et al. Child and adolescent health from 1990 to 2015: findings from the global burden of diseases, injuries, and risk factors 2015 study. JAMA Pediatr. 2017;171(6):573–92.

    Article  Google Scholar 

  30. Adeloye D, Bowman K, Chan KY, Patel S, Campbell H, Rudan I. Global and regional child deaths due to injuries: an assessment of the evidence. J Glob Health [Internet]. [cited 2020;8(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317703/

  31. Lam CG, Howard SC, Bouffet E, Pritchard-Jones K. Science and health for all children with cancer. Science. 2019;363(6432):1182–6.

    Article  CAS  PubMed  Google Scholar 

  32. Weiser DA, Kaste SC, Siegel MJ, Adamson PC. Imaging in childhood cancer: a society for pediatric radiology and children’s oncology group joint task force report: radiographic imaging in childhood cancer. Pediatr Blood Cancer. 2013;60(8):1253–60.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gupta S, Howard SC, Hunger SP, Antillon FG, Metzger ML, Israels T, et al. Treating childhood cancer in low- and middle-income countries. In: Gelband H, Jha P, Sankaranarayanan R, Horton S, editors. Cancer: disease control priorities, vol. 3. 3rd ed. Washington, DC: The International Bank for Reconstruction and Development/The World Bank; 2015. [cited 2020 Oct 30]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK343626/.

    Google Scholar 

  34. Zheleva B, Atwood JB. The invisible child: childhood heart disease in global health. Lancet Lond Engl. 2017;389(10064):16–8.

    Article  Google Scholar 

  35. Siripornpitak S, Pornkul R, Khowsathit P, Layangool T, Promphan W, Pongpanich B. Cardiac CT angiography in children with congenital heart disease. Eur J Radiol. 2013;82(7):1067–82.

    Article  PubMed  Google Scholar 

  36. Kis E. Pediatric radiology crossing continents. Pediatr Radiol. 2021;51(4):574–580. https://doi.org/10.1007/s00247-019-04598-9. Epub 2020 Jan 22. PMID: 31970458.

  37. Meyer S, Groenewald WA, Pitcher RD. Diagnostic reference levels in low- and middle-income countries: early “ALARAm” bells? Acta Radiol Stockh Swed 1987. 2017;58(4):442–8.

    Google Scholar 

  38. Vassileva J, Rehani MM, Al-Dhuhli H, Al-Naemi HM, Al-Suwaidi JS, Appelgate K, et al. IAEA survey of pediatric CT practice in 40 countries in Asia, Europe, Latin America, and Africa: Part 1, frequency and appropriateness. AJR Am J Roentgenol. 2012;198(5):1021–31.

    Article  PubMed  Google Scholar 

  39. Vassileva J, Rehani MM, Applegate K, Ahmed NA, Al-Dhuhli H, Al-Naemi HM, et al. IAEA survey of paediatric computed tomography practice in 40 countries in Asia, Europe, Latin America and Africa: procedures and protocols. Eur Radiol. 2013;23(3):623–31.

    Article  PubMed  Google Scholar 

  40. Gopaul R, Bearman G, Stevens M. ultrasound use in resource-limited settings: a systematic review. J Glob Radiol [Internet]. 2018;4(1) Available from: https://escholarship.umassmed.edu/jgr/vol4/iss1/5

  41. Reynolds TA, Noble J, Paschal G, Sawe HR, Sohoni A, Shah S, et al. Bedside ultrasound training at Muhimbili National Hospital in Dar es Salaam, Tanzania and hospital San Carlos in Chiapas. Mexico Afr J Emerg Med. 2016;6(3):125–31.

    Article  PubMed  Google Scholar 

  42. Pneumonia in Children Statistics [Internet]. UNICEF DATA. [cited 2020 Nov 15]. Available from: https://data.unicef.org/topic/child-health/pneumonia/

  43. Nadimpalli A, Tsung JW, Sanchez R, Shah S, Zelikova E, Umphrey L, et al. Feasibility of training clinical officers in point-of-care ultrasound for pediatric respiratory diseases in Aweil, South Sudan. Am J Trop Med Hyg. 2019;101(3):689–95.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Becker DM, Tafoya CA, Becker SL, Kruger GH, Tafoya MJ, Becker TK. The use of portable ultrasound devices in low- and middle-income countries: a systematic review of the literature. Tropical Med Int Health. 2016;21(3):294–311.

    Article  Google Scholar 

  45. Prospective observational study of point-of-care ultrasound for diagnosing pneumonia | Archives of Disease in Childhood [Internet]. [cited 2020 Nov 15]. Available from: https://adc.bmj.com/content/104/1/12

  46. Pereda MA, Chavez MA, Hooper-Miele CC, Gilman RH, Steinhoff MC, Ellington LE, et al. Lung ultrasound for the diagnosis of pneumonia in children: a meta-analysis. Pediatrics. 2015;135(4):714–22.

    Article  PubMed  Google Scholar 

  47. Reali F, Sferrazza Papa GF, Carlucci P, Fracasso P, Di Marco F, Mandelli M, et al. Can lung ultrasound replace chest radiography for the diagnosis of pneumonia in hospitalized children? Respir Int Rev Thorac Dis. 2014;88(2):112–5.

    Google Scholar 

  48. Chavez MA, Naithani N, Gilman RH, Tielsch JM, Khatry S, Ellington LE, et al. Agreement between the World Health Organization algorithm and lung consolidation identified using point-of-care ultrasound for the diagnosis of childhood pneumonia by general practitioners. Lung. 2015;193(4):531–8.

    Article  PubMed  Google Scholar 

  49. Shah VP, Tunik MG, Tsung JW. Prospective evaluation of point-of-care ultrasonography for the diagnosis of pneumonia in children and young adults. JAMA Pediatr. 2013;167(2):119.

    Article  PubMed  Google Scholar 

  50. Jones BP, Tay ET, Elikashvili I, Sanders JE, Paul AZ, Nelson BP, et al. Feasibility and safety of substituting lung ultrasonography for chest radiography when diagnosing pneumonia in children: a randomized controlled trial. Chest. 2016;150(1):131–8.

    Article  PubMed  Google Scholar 

  51. Bélard S, Heuvelings CC, Banderker E, Bateman L, Heller T, Andronikou S, et al. Utility of point-of-care ultrasound in children with pulmonary tuberculosis. Pediatr Infect Dis J. 2018;37(7):637–42.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Moseme T, Andronikou S. Through the eye of the suprasternal notch: point-of-care sonography for tuberculous mediastinal lymphadenopathy in children. Pediatr Radiol [Internet]. 2014 [cited 2020 Nov 15];44(6):681–4. Available from: https://doi.org/10.1007/s00247-014-2890-7.

  53. Heller T, Wallrauch C, Goblirsch S, Brunetti E. Focused assessment with sonography for HIV-associated tuberculosis (FASH): a short protocol and a pictorial review. Crit Ultrasound J. 2012;4(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bosch de Basea M, Salotti JA, Pearce MS, Muchart J, Riera L, Barber I, et al. Trends and patterns in the use of computed tomography in children and young adults in Catalonia — results from the EPI-CT study. Pediatr Radiol. 2016;46(1):119–29.

    Article  PubMed  Google Scholar 

  55. Dewan MC, Warf BC, Mugamba J. Diagnosing Dandy-Walker complex by computed tomography: experience in Uganda and recommendations for hospitals in resource-limited settings. J Glob Health Columbia Univ. 2011;1(1):14–6.

    Google Scholar 

  56. Moifo B, Jiotsa RA, Nguefack S, Tatah S, Mah E, Nguefack FD, et al. Prevalence and CT-scan presentations of brain malformations in children at a university-affiliated mother and child hospital (Cameroon). Open J Med Imaging. 2017;7(4):220–8.

    Article  Google Scholar 

  57. Machingaidze PR, Buys H, Kilborn T, Muloiwa R. Clinical use and indications for head computed tomography in children presenting with acute medical illness in a low- and middle-income setting. PLoS One. 2020;15(9):e0239731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ortiz MV, Dunkel IJ. Retinoblastoma. J Child Neurol. 2016;31(2):227–36.

    Article  PubMed  Google Scholar 

  59. Brisse HJ, Guesmi M, Aerts I, Sastre-Garau X, Savignoni A, Lumbroso-Le Rouic L, et al. Relevance of CT and MRI in retinoblastoma for the diagnosis of postlaminar invasion with normal-size optic nerve: a retrospective study of 150 patients with histological comparison. Pediatr Radiol. 2007;37(7):649–56.

    Article  PubMed  Google Scholar 

  60. Sow AS, Ndiaye JMM, Ka AM, Sacramento DGT, Kane H, Nguer M, et al. Apport de la TDM dans le diagnostic et le suivi du retinoblastome au Sénégal. J Fr Ophtalmol. 2019;42(10):1085–9.

    Article  CAS  PubMed  Google Scholar 

  61. Sayers J. The world health report 2001 — mental health: new understanding, new hope. Bull World Health Organ. 2001;79(11):1085.

    PubMed Central  Google Scholar 

  62. Poudel P, Gupta MK, Kafle SP. Computerized axial tomography findings in Children with afebrile seizures: a hospital based study at Eastern Nepal. J Nepal Health Res Counc. 2017;15(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  63. Andronikou S. Pediatric teleradiology in low-income settings and the areas for future research in teleradiology. Front Public Health [Internet]. 2014 21 [cited 2020 Nov 15];2. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139654/

  64. Otero HJ, Andronikou S, Grassi DC, Silva CT. Providing expert pediatric teleradiology services around the globe: the world federation of pediatric imaging experience. J Am Coll Radiol JACR. 2020;17(1 Pt A):53–55.

    Google Scholar 

  65. WHO | Data for maternal, newborn, child and adolescent health [Internet]. WHO. [cited 2020 Nov 15]. Available from: http://www.who.int/maternal_child_adolescent/data/en/

  66. Zanaboni P, Wootton R. Adoption of telemedicine: from pilot stage to routine delivery. BMC Med Inform Decis Mak. 2012;4(12):1.

    Article  Google Scholar 

  67. Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, et al. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology. 2019;291(3):781–91.

    Article  PubMed  Google Scholar 

  68. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLOS Med [Internet]. 2018 20 [cited 2020 Nov 15];15(11):e1002686. Available from: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002686

  69. World Health Organization. WHO consolidated guidelines on tuberculosis module 2: screening – systematic screening for tuberculosis disease [Internet]. Geneva: World Health Organization; 2021 [cited 2021 May 12]. Available from: https://www.who.int/publications-detail-redirect/9789240022676

  70. Mollura DJ, Culp MP, Pollack E, Battino G, Scheel JR, Mango VL, et al. Artificial intelligence in low- and middle-income countries: innovating global health radiology. Radiology. 2020;6:201434.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ugas-Charcape, C.F., Naidoo, J., Sodhi, K.S. (2022). Pediatric Radiology in Resource-Limited Settings. In: Otero, H.J., Kaplan, S.L., Medina, L.S., Blackmore, C.C., Applegate, K.E. (eds) Evidence-Based Imaging in Pediatrics. Evidence-Based Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-38095-3_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38095-3_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38095-3

  • Online ISBN: 978-3-030-38095-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics