Skip to main content

Smectite Clay Nanoarchitectures: Rational Design and Applications

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

This chapter addresses different types of materials with nanoarchitectures with improved accessibility that are obtained from natural clays. Some historical aspects, structural properties, classification, and application are mentioned. Indeed, the class of clays is quite broad and this chapter emphasizes the smectite class, which are considered the most versatile, mainly because they can intercalate and stabilize species that act as pillars in the interlamellar region. This improves the ability for bulky molecules be adsorbed, reacted, or even released in controlled systems. Successful examples of montmorillonite clays with improved accessibility include acid-activated clays, pillared interlayered clays, porous clay heterostructures, and silica-clay nanocomposites. Clays with more open structures have several properties that can be adapted through synthesis modifications. Thus, the type of clay-mineral, the choice of surfactant and cosurfactant, the pillaring agent, the ability to insert heteroatoms into the silica structure, and the procedure for removing organic content are the main factors and they are detailed in this chapter. Finally, the applications reported in recent years are described, as are the challenges and perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Caminade A-M, Beraa A, Laurent R, Delavaux-Nicot B, Hajjaji M (2019) Dendrimers and hyper-branched polymers interacting with clays: fruitful associations for functional materials. J Mater Chem A 7(34):19634–19650. https://doi.org/10.1039/C9TA05718H

    Article  CAS  Google Scholar 

  2. Schwanke AJ, Balzer R, Pergher S (2017) Microporous and mesoporous materials from natural and inexpensive sources. In: Martínez LMT, Kharissova OV, Kharisov BI (eds) Handbook of ecomaterials. Springer International Publishing, Cham, pp 1–22. https://doi.org/10.1007/978-3-319-48281-1_43-1

    Chapter  Google Scholar 

  3. Zaia DAM (2003) Da geração espontânea à química prebiótica. Quím Nova 26:260–264

    Article  CAS  Google Scholar 

  4. Carretero MI (2002) Clay minerals and their beneficial effects upon human health. A review. Appl Clay Sci 21(3):155–163. https://doi.org/10.1016/S0169-1317(01)00085-0

    Article  CAS  Google Scholar 

  5. Burst JF (1991) The application of clay minerals in ceramics. Appl Clay Sci 5(5):421–443. https://doi.org/10.1016/0169-1317(91)90016-3

    Article  CAS  Google Scholar 

  6. López-Galindo A, Viseras C, Cerezo P (2007) Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl Clay Sci 36(1):51–63. https://doi.org/10.1016/j.clay.2006.06.016

    Article  CAS  Google Scholar 

  7. Kausar A, Iqbal M, Javed A, Aftab K, Nazli Z-i-H, Bhatti HN, Nouren S (2018) Dyes adsorption using clay and modified clay: a review. J Mol Liq 256:395–407. https://doi.org/10.1016/j.molliq.2018.02.034

    Article  CAS  Google Scholar 

  8. Xu Y, Liang X, Xu Y, Qin X, Huang Q, Wang L, Sun Y (2017) Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere 27(2):193–204. https://doi.org/10.1016/S1002-0160(17)60310-2

    Article  CAS  Google Scholar 

  9. Cecilia JA, García-Sancho C, Vilarrasa-García E, Jiménez-Jiménez J, Rodriguez-Castellón E (2018) Synthesis, characterization, uses and applications of porous clays heterostructures: a review. Chem Rec 18(7–8):1085–1104. https://doi.org/10.1002/tcr.201700107

    Article  CAS  Google Scholar 

  10. Murray HH (1991) Overview – clay mineral applications. Appl Clay Sci 5(5):379–395. https://doi.org/10.1016/0169-1317(91)90014-Z

    Article  CAS  Google Scholar 

  11. Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science, vol 1, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  12. Auerbach SM, Carrado KA, Dutta PK (2004) Handbook of layered materials. M. Dekker, New York

    Book  Google Scholar 

  13. Tournassat C, Bourg IC, Steefel CI, Bergaya F (2015) Chapter 1 – Surface properties of clay minerals. In: Developments in clay science, vol 6. Elsevier, pp 5–31. https://doi.org/10.1016/B978-0-08-100027-4.00001-2

  14. Gomes CF (1988) Argilas: o que são e para que servem, 1st edn. Fundaçao Calouste Gulbenkian, D.L., Lisboa

    Google Scholar 

  15. Shaw HF (2018) DC Bain, BFL Smith. In: Wilson MJ (ed) Clay mineralogy: spectroscopic and chemical determinative methods. Chapman & Hall, New York, 1994:300. Mineralogical Magazine 58(393):701–701. https://doi.org/10.1180/minmag.1994.058.393.30

  16. Bergaya FJ, Jaber M, Lamber JF (2011) Rubber-clay nanocomposites: science, technology and applications, 1st edn. Wiley, New York

    Google Scholar 

  17. Fripiat JJ (1995) From clay to zeolites and back. Book of Abstracts, Euroclay, Leuven

    Google Scholar 

  18. Bieseki L, Treichel H, Araujo AS, Pergher SBC (2013) Porous materials obtained by acid treatment processing followed by pillaring of montmorillonite clays. Appl Clay Sci 85:46–52. https://doi.org/10.1016/j.clay.2013.08.044

    Article  CAS  Google Scholar 

  19. Pichowicz M, Mokaya R (2001) Porous clay heterostructures with enhanced acidity obtained from acid-activated clays. Chem Commun (20):2100–2101. https://doi.org/10.1039/B106660A

  20. Polverejan M, Pauly TR, Pinnavaia TJ (2000) Acidic porous clay heterostructures (PCH): intragallery assembly of mesoporous silica in synthetic saponite clays. Chem Mater 12(9):2698–2704. https://doi.org/10.1021/cm0002618

    Article  CAS  Google Scholar 

  21. Komadel P, Madejová J (2013) Chapter 10.1 – Acid activation of clay minerals. In: Bergaya F, Lagaly G (eds) Developments in clay science, vol 5. Elsevier, pp 385–409. https://doi.org/10.1016/B978-0-08-098258-8.00013-4

  22. Komadel P (2016) Acid activated clays: materials in continuous demand. Appl Clay Sci 131:84–99. https://doi.org/10.1016/j.clay.2016.05.001

    Article  CAS  Google Scholar 

  23. Kumar BS, Dhakshinamoorthy A, Pitchumani K (2014) K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Cat Sci Technol 4(8):2378–2396. https://doi.org/10.1039/C4CY00112E

    Article  CAS  Google Scholar 

  24. Schwanke A, dos Santos A, Santos AG, Bieski L, Di Souza L, Campos P, Pergher SBC (2016) Materiais mesoporosos – um caminho acessível. EDUFRN, Natal

    Google Scholar 

  25. Barrer RM, MacLeod DM (1955) Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Trans Faraday Soc 51(0):1290–1300. https://doi.org/10.1039/TF9555101290

    Article  CAS  Google Scholar 

  26. Vaughan DEW Lussier RJ, Magee JS Jr (1979) Pillared interlayered clay useful as catlysts and sorbents. US Patent 4176090

    Google Scholar 

  27. Keggin J (1934) The structure and formula of 12-phosphotungstic acid. Proc R Soc Lond A 144:75–100

    Google Scholar 

  28. Keggin JF, Bragg WL (1934) The structure and formula of 12-phosphotungstic acid. Proc R Soc Lond A 144(851):75–100. https://doi.org/10.1098/rspa.1934.0035

    Article  CAS  Google Scholar 

  29. Rowsell J, Nazar LF (2000) Speciation and thermal transformation in alumina sols: structures of the polyhydroxyoxoaluminum cluster [Al30O8(OH)56(H2O)26]18+ and its δ-Keggin Moieté. J Am Chem Soc 122(15):3777–3778. https://doi.org/10.1021/ja993711+

    Article  CAS  Google Scholar 

  30. Zhu J, Wen K, Zhang P, Wang Y, Ma L, Xi Y, Zhu R, Liu H, He H (2017) Keggin-Al30 pillared montmorillonite. Microporous Mesoporous Mater 242:256–263. https://doi.org/10.1016/j.micromeso.2017.01.039

    Article  CAS  Google Scholar 

  31. Wen K, Wei J, He H, Zhu J, Xi Y (2019) Keggin-Al30: an intercalant for Keggin-Al30 pillared montmorillonite. Appl Clay Sci 180:105203. https://doi.org/10.1016/j.clay.2019.105203

    Article  CAS  Google Scholar 

  32. Wen K, Zhu J, Chen H, Ma L, Liu H, Zhu R, Xi Y, He H (2019) Arrangement models of Keggin-Al30 and Keggin-Al13 in the interlayer of montmorillonite and the impacts of pillaring on surface acidity: a comparative study on catalytic oxidation of toluene. Langmuir 35(2):382–390. https://doi.org/10.1021/acs.langmuir.8b03447

    Article  CAS  Google Scholar 

  33. Abeysinghe S, Unruh DK, Forbes TZ (2013) Surface modification of Al30 Keggin-type polyaluminum molecular clusters. Inorg Chem 52(10):5991–5999. https://doi.org/10.1021/ic400321k

    Article  CAS  Google Scholar 

  34. Phillips BL, Vaughn JS, Smart S, Pan L (2016) Characterization of Al30 in commercial poly-aluminum chlorohydrate by solid-state 27Al NMR spectroscopy. J Colloid Interface Sci 476:230–239. https://doi.org/10.1016/j.jcis.2016.05.019

    Article  CAS  Google Scholar 

  35. Corum KW, Mason SE (2016) Using density functional theory to study shape-reactivity relationships in Keggin Al-nanoclusters. Water Res 102:413–420. https://doi.org/10.1016/j.watres.2016.06.043

    Article  CAS  Google Scholar 

  36. Corum KW, Fairley M, Unruh DK, Payne MK, Forbes TZ, Mason SE (2015) Characterization of phosphate and arsenate adsorption onto Keggin-type Al30 cations by experimental and theoretical methods. Inorg Chem 54(17):8367–8374. https://doi.org/10.1021/acs.inorgchem.5b01039

    Article  CAS  Google Scholar 

  37. Allouche L, Taulelle F (2003) Conversion of Al13 Keggin ε into Al30: a reaction controlled by aluminum monomers. Inorg Chem Commun 6(9):1167–1170. https://doi.org/10.1016/S1387-7003(03)00166-7

    Article  CAS  Google Scholar 

  38. Wu Z, Zhang X, Zhou C, Pang J, Zhang P (2016) A comparative study on the characteristics and coagulation mechanism of PAC-Al13 and PAC-Al30. RSC Adv 6(110):108369–108374. https://doi.org/10.1039/C6RA21147J

    Article  CAS  Google Scholar 

  39. Zhu J, Wen K, Wang Y, Ma L, Su X, Zhu R, Xi Y, He H (2018) Superior thermal stability of Keggin-Al30 pillared montmorillonite: a comparative study with Keggin-Al13 pillared montmorillonite. Microporous Mesoporous Mater 265:104–111. https://doi.org/10.1016/j.micromeso.2018.02.007

    Article  CAS  Google Scholar 

  40. Gil A, GandÍA LM, Vicente MA (2000) Recent advances in the synthesis and catalytic applications of pillared clays. Catal Rev 42(1–2):145–212. https://doi.org/10.1081/CR-100100261

    Article  CAS  Google Scholar 

  41. Kloprogge JT (1998) Synthesis of smectites and porous pillared clay catalysts: a review. J Porous Mater 5(1):5–41. https://doi.org/10.1023/A:1009625913781

    Article  CAS  Google Scholar 

  42. Bertella F, Pergher SBC (2015) Pillaring of bentonite clay with Al and Co. Microporous Mesoporous Mater 201:116–123. https://doi.org/10.1016/j.micromeso.2014.09.013

    Article  CAS  Google Scholar 

  43. Gil A, Guiu G, Grange P, Montes M (1995) Preparation and characterization of microporosity and acidity of silica-alumina pillared clays. J Phys Chem 99(1):301–312. https://doi.org/10.1021/j100001a046

    Article  CAS  Google Scholar 

  44. Bahranowski K, Włodarczyk W, Wisła-Walsh E, Gaweł A, Matusik J, Klimek A, Gil B, Michalik-Zym A, Dula R, Socha RP, Serwicka EM (2015) [Ti,Zr]-pillared montmorillonite – a new quality with respect to Ti- and Zr-pillared clays. Microporous Mesoporous Mater 202:155–164. https://doi.org/10.1016/j.micromeso.2014.09.055

    Article  CAS  Google Scholar 

  45. Pérez Zurita MJ, Vitale G, de Goldwasser MR, Rojas D, García JJ (1996) Fe-pillared clays: a combination of zeolite shape selectivity and iron activity in the CO hydrogenation reaction. J Mol Catal A Chem 107(1):175–183. https://doi.org/10.1016/1381-1169(95)00218-9

    Article  Google Scholar 

  46. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712. https://doi.org/10.1038/359710a0

    Article  CAS  Google Scholar 

  47. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114(27):10834–10843. https://doi.org/10.1021/ja00053a020

    Article  CAS  Google Scholar 

  48. Galarneau A, Barodawalla A, Pinnavaia TJ (1995) Porous clay heterostructures formed by gallery-templated synthesis. Nature 374(6522):529–531. https://doi.org/10.1038/374529a0

    Article  CAS  Google Scholar 

  49. Chmielarz L, Kuśtrowski P, Piwowarska Z, Dudek B, Gil B, Michalik M (2009) Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process. Appl Catal B Environ 88(3):331–340. https://doi.org/10.1016/j.apcatb.2008.11.001

    Article  CAS  Google Scholar 

  50. Schoonheydt R, Pinnavaia T, Lagaly G, Gangas N (1999) Pillared clays and pillared layered solids. Pure Appl Chem 71:2367–2371. https://doi.org/10.1351/pac199971122367

    Article  CAS  Google Scholar 

  51. Wang Y, Lin X, Wen K, Zhu J, He H (2015) Effects of organic templates on the structural properties of porous clay heterostructures: a non-micellar template model for porous structure. J Porous Mater 22(1):219–228. https://doi.org/10.1007/s10934-014-9888-2

    Article  CAS  Google Scholar 

  52. Wang Y, Zhang P, Wen K, Su X, Zhu J, He H (2016) A new insight into the compositional and structural control of porous clay heterostructures from the perspective of NMR and TEM. Microporous Mesoporous Mater 224:285–293. https://doi.org/10.1016/j.micromeso.2015.12.053

    Article  CAS  Google Scholar 

  53. Wang Y, Su X, Lin X, Zhang P, Wen K, Zhu J, He H (2015) The non-micellar template model for porous clay heterostructures: a perspective from the layer charge of base clay. Appl Clay Sci 116–117:102–110. https://doi.org/10.1016/j.clay.2015.08.019

    Article  CAS  Google Scholar 

  54. Gârea SA, Mihai AI, Vasile E, Nistor C, Sârbu A, Mitran R (2016) Synthesis of new porous clay heterostructures: the influence of co-surfactant type. Mater Chem Phys 179:17–26. https://doi.org/10.1016/j.matchemphys.2016.04.056

    Article  CAS  Google Scholar 

  55. Letaief S, Ruiz-Hitzky E (2003) Silica–clay nanocomposites. Chem Commun (24):2996–2997. https://doi.org/10.1039/B310854F

  56. Belver C, Aranda P, Martín-Luengo MA, Ruiz-Hitzky E (2012) New silica/alumina–clay heterostructures: properties as acid catalysts. Microporous Mesoporous Mater 147(1):157–166. https://doi.org/10.1016/j.micromeso.2011.05.037

    Article  CAS  Google Scholar 

  57. Ruiz-Hitzky E, Aranda P (2014) Novel architectures in porous materials based on clays. J Sol-Gel Sci Technol 70(2):307–316. https://doi.org/10.1007/s10971-013-3237-9

    Article  CAS  Google Scholar 

  58. Akkari M, Aranda P, Ben Haj Amara A, Ruiz-Hitzky E (2016) Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications. Beilstein J Nanotechnol 7:1971–1982. https://doi.org/10.3762/bjnano.7.188

    Article  CAS  Google Scholar 

  59. Letaïef S, Martín-Luengo MA, Aranda P, Ruiz-Hitzky E (2006) A colloidal route for delamination of layered solids: novel porous-clay nanocomposites. Adv Funct Mater 16(3):401–409. https://doi.org/10.1002/adfm.200500190

    Article  CAS  Google Scholar 

  60. de Paiva LB, Morales AR, Valenzuela Díaz FR (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42(1):8–24. https://doi.org/10.1016/j.clay.2008.02.006

    Article  CAS  Google Scholar 

  61. Pinnavaia TJ, Galarneau AH, Barodawalla AF (1996) Porous clay heterostructures prepared by gallery templated synthesis. US5834391A

    Google Scholar 

  62. Cecilia JA, García-Sancho C, Franco F (2013) Montmorillonite based porous clay heterostructures: influence of Zr in the structure and acidic properties. Microporous Mesoporous Mater 176:95–102. https://doi.org/10.1016/j.micromeso.2013.03.037

    Article  CAS  Google Scholar 

  63. Hao Q-Q, Liu Z-W, Zhang B, Wang G-W, Ma C, Frandsen W, Li J, Liu Z-T, Hao Z, Su DS (2012) Porous montmorillonite heterostructures directed by a single alkyl ammonium template for controlling the product distribution of Fischer–Tropsch synthesis over cobalt. Chem Mater 24(6):972–974. https://doi.org/10.1021/cm203872m

    Article  CAS  Google Scholar 

  64. Polverejan M, Liu Y, Pinnavaia TJ (2002) Aluminated derivatives of porous clay heterostructures (PCH) assembled from synthetic saponite clay: properties as supermicroporous to small mesoporous acid catalysts. Chem Mater 14(5):2283–2288. https://doi.org/10.1021/cm011559g

    Article  CAS  Google Scholar 

  65. Galarneau A, Barodawalla A, Pinnavaia TJ (1997) Porous clay heterostructures (PCH) as acid catalysts. Chem Commun (17):1661–1662. https://doi.org/10.1039/A703101G

  66. Vansant EF, Cool P (2001) Chemical modifications of oxide surfaces. Colloids Surf A Physicochem Eng Asp 179(2):145–150. https://doi.org/10.1016/S0927-7757(00)00650-6

    Article  CAS  Google Scholar 

  67. Pinto ML, Saini VK, Guil JM, Pires J (2014) Introduction of aluminum to porous clay heterostructures to modify the adsorption properties. Appl Clay Sci 101:497–502. https://doi.org/10.1016/j.clay.2014.09.013

    Article  CAS  Google Scholar 

  68. Belver C, Bedia J, Rodriguez JJ (2017) Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. J Hazard Mater 322:233–242. https://doi.org/10.1016/j.jhazmat.2016.02.028

    Article  CAS  Google Scholar 

  69. Pinto ML, Marques J, Pires J (2012) Porous clay heterostructures with zirconium for the separation of hydrocarbon mixtures. Sep Purif Technol 98:337–343. https://doi.org/10.1016/j.seppur.2012.07.003

    Article  CAS  Google Scholar 

  70. Chmielarz L, Gil B, Kuśtrowski P, Piwowarska Z, Dudek B, Michalik M (2009) Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica–titania pillars – synthesis and characterization. J Solid State Chem 182(5):1094–1104. https://doi.org/10.1016/j.jssc.2009.02.017

    Article  CAS  Google Scholar 

  71. Belver C, Bedia J, Rodriguez JJ (2015) Titania–clay heterostructures with solar photocatalytic applications. Appl Catal B Environ 176–177:278–287. https://doi.org/10.1016/j.apcatb.2015.04.004

    Article  CAS  Google Scholar 

  72. Chmielarz L, Kowalczyk A, Wojciechowska M, Boroń P, Dudek B, Michalik M (2014) Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process. Chem Pap 68(9):1219–1227. https://doi.org/10.2478/s11696-013-0463-0

    Article  CAS  Google Scholar 

  73. Zimowska M, Pálková H, Madejová J, Dula R, Pamin K, Olejniczak Z, Gil B, Serwicka EM (2013) Laponite-derived porous clay heterostructures: III. The effect of alumination. Microporous Mesoporous Mater 175:67–75. https://doi.org/10.1016/j.micromeso.2013.02.047

    Article  CAS  Google Scholar 

  74. Pálková H, Madejová J, Zimowska M, Bielańska E, Olejniczak Z, Lityńska-Dobrzyńska L, Serwicka EM (2010) Laponite-derived porous clay heterostructures: I. Synthesis and physicochemical characterization. Microporous Mesoporous Mater 127(3):228–236. https://doi.org/10.1016/j.micromeso.2009.07.019

    Article  CAS  Google Scholar 

  75. Chmielarz L, Piwowarska Z, Kuśtrowski P, Węgrzyn A, Gil B, Kowalczyk A, Dudek B, Dziembaj R, Michalik M (2011) Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process. Appl Clay Sci 53(2):164–173. https://doi.org/10.1016/j.clay.2010.12.009

    Article  CAS  Google Scholar 

  76. Chmielarz L, Piwowarska Z, Kuśtrowski P, Gil B, Adamski A, Dudek B, Michalik M (2009) Porous clay heterostructures (PCHs) intercalated with silica-titania pillars and modified with transition metals as catalysts for the DeNOx process. Appl Catal B Environ 91(1):449–459. https://doi.org/10.1016/j.apcatb.2009.06.014

    Article  CAS  Google Scholar 

  77. Chmielarz L, Kuśtrowski P, Drozdek M, Dziembaj R, Cool P, Vansant EF (2006) Selective catalytic oxidation of ammonia into nitrogen over PCH modified with copper and iron species. Catal Today 114(2):319–325. https://doi.org/10.1016/j.cattod.2006.01.020

    Article  CAS  Google Scholar 

  78. Benjelloun M, Cool P, Van Der Voort P, Vansant EF (2002) Template extraction from porous clay heterostructures: influence on the porosity and the hydrothermal stability of the materials. Phys Chem Chem Phys 4(12):2818–2823. https://doi.org/10.1039/B108361A

    Article  CAS  Google Scholar 

  79. Gil A, Vicente MA (2020) Progress and perspectives on pillared clays applied in energetic and environmental remediation processes. Curr Opin Green Sustain Chem 21:56–63. https://doi.org/10.1016/j.cogsc.2019.12.004

    Article  Google Scholar 

  80. Cardoso B, Pires J, Carvalho AP, Kuźniarska-Biernacka I, Silva AR, de Castro B, Freire C (2005) Mn(III) salen complex immobilised into pillared clays by in situ and simultaneous pillaring/encapsulation procedures: application in the heterogeneous epoxidation of styrene. Microporous Mesoporous Mater 86(1):295–302. https://doi.org/10.1016/j.micromeso.2005.07.014

    Article  CAS  Google Scholar 

  81. Kuźniarska-Biernacka I, Silva AR, Carvalho AP, Pires J, Freire C (2010) Anchoring of chiral manganese(III) salen complex onto organo clay and porous clay heterostructure and catalytic activity in alkene epoxidation. Catal Lett 134(1):63–71. https://doi.org/10.1007/s10562-009-0232-4

    Article  CAS  Google Scholar 

  82. Kuźniarska-Biernacka I, Pereira C, Carvalho AP, Pires J, Freire C (2011) Epoxidation of olefins catalyzed by manganese(III) salen complexes grafted to porous heterostructured clays. Appl Clay Sci 53(2):195–203. https://doi.org/10.1016/j.clay.2010.12.017

    Article  CAS  Google Scholar 

  83. Feng B, Wei Y, Qiu Y, Zuo S, Ye N (2018) Ce-modified AlZr pillared clays supported-transition metals for catalytic combustion of chlorobenzene. J Rare Earths 36(11):1169–1174. https://doi.org/10.1016/j.jre.2018.03.026

    Article  CAS  Google Scholar 

  84. Sohrabnezhad S, Takas ME (2019) Synthesis and characterization of porous clay heterostructure intercalated with CuO nanoparticles as a visible light-driven photocatalyst. J Iran Chem Soc 16(1):45–55. https://doi.org/10.1007/s13738-018-1479-8

    Article  CAS  Google Scholar 

  85. Sanchis R, Cecilia JA, Soriano MD, Vázquez MI, Dejoz A, López Nieto JM, Rodríguez Castellón E, Solsona B (2018) Porous clays heterostructures as supports of iron oxide for environmental catalysis. Chem Eng J 334:1159–1168. https://doi.org/10.1016/j.cej.2017.11.060

    Article  CAS  Google Scholar 

  86. Cheng Z, Chen Z, Li J, Zuo S, Yang P (2018) Mesoporous silica-pillared clays supported nanosized Co3O4-CeO2 for catalytic combustion of toluene. Appl Surf Sci 459:32–39. https://doi.org/10.1016/j.apsusc.2018.07.203

    Article  CAS  Google Scholar 

  87. Joseph A, Vellayan K, González B, Vicente MA, Gil A (2019) Effective degradation of methylene blue in aqueous solution using Pd-supported Cu-doped Ti-pillared montmorillonite catalyst. Appl Clay Sci 168:7–10. https://doi.org/10.1016/j.clay.2018.10.009

    Article  CAS  Google Scholar 

  88. González B, Trujillano R, Vicente MA, Rives V, Korili SA, Gil A (2019) Photocatalytic degradation of trimethoprim on doped Ti-pillared montmorillonite. Appl Clay Sci 167:43–49. https://doi.org/10.1016/j.clay.2018.10.006

    Article  CAS  Google Scholar 

  89. Cheng J, Song Y, Ye Q, Cheng S, Kang T, Dai H (2018) A mechanistic investigation on the selective catalytic reduction of NO with ammonia over the V-Ce/Ti-PILC catalysts. Mol Catal 445:111–123. https://doi.org/10.1016/j.mcat.2017.11.019

    Article  CAS  Google Scholar 

  90. Marcos FCF, Assaf JM, Assaf EM (2018) CuFe and CuCo supported on pillared clay as catalysts for CO2 hydrogenation into value-added products in one-step. Mol Catal 458:297–306. https://doi.org/10.1016/j.mcat.2017.12.025

    Article  CAS  Google Scholar 

  91. Cheng J, Ye Q, Zheng C, Cheng S, Kang T, Dai H (2019) Effect of ceria loading on Zr-pillared clay catalysts for selective catalytic reduction of NO with NH3. New J Chem 43(27):10850–10858. https://doi.org/10.1039/C9NJ02102G

    Article  CAS  Google Scholar 

  92. Rakitskaya TL, Dzhyga GM, Kiose TA, Oleksenko LP, Volkova VY (2019) Pd(II), Cu(II), and pillared clay based nanocatalysts for low-temperature CO oxidation. SN Appl Sci 1(4):291. https://doi.org/10.1007/s42452-019-0314-x

    Article  CAS  Google Scholar 

  93. Dhahri M, Muñoz MA, Yeste MP, Cauqui MA, Frini-Srasra N (2016) Preparation of manganese-impregnated alumina-pillared bentonite, characterization and catalytic oxidation of CO. React Kinet Mech Catal 118(2):655–668. https://doi.org/10.1007/s11144-016-1017-6

    Article  CAS  Google Scholar 

  94. Cecilia JA, Soriano MD, Natoli A, Rodríguez-Castellón E, López Nieto JM (2018) Selective oxidation of hydrogen sulfide to sulfur using vanadium oxide supported on porous clay heterostructures (PCHs) formed by pillars silica, silica-zirconia or silica-titania. Materials 11(9):1562

    Article  Google Scholar 

  95. Marosz M, Kowalczyk A, Chmielarz L (2019) Modified vermiculites as effective catalysts for dehydration of methanol and ethanol. Catal Today. https://doi.org/10.1016/j.cattod.2019.07.003

  96. Yuan M, Deng W, Dong S, Li Q, Zhao B, Su Y (2018) Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene. Chem Eng J 353:839–848. https://doi.org/10.1016/j.cej.2018.07.201

    Article  CAS  Google Scholar 

  97. Chmielarz L, Kowalczyk A, Skoczek M, Rutkowska M, Gil B, Natkański P, Radko M, Motak M, Dębek R, Ryczkowski J (2018) Porous clay heterostructures intercalated with multicomponent pillars as catalysts for dehydration of alcohols. Appl Clay Sci 160:116–125. https://doi.org/10.1016/j.clay.2017.12.015

    Article  CAS  Google Scholar 

  98. Marković M, Marinović S, Mudrinić T, Ajduković M, Jović-Jovičić N, Mojović Z, Orlić J, Milutinović-Nikolić A, Banković P (2019) Co(II) impregnated Al(III)-pillared montmorillonite–synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Appl Clay Sci 182:105276. https://doi.org/10.1016/j.clay.2019.105276

    Article  CAS  Google Scholar 

  99. Kashif M, Yuan M, Abduallah M, Su Y (2019) Fully selective catalytic oxidation of NO to NO2 over most active Ga-PCH catalyst. J Environ Chem Eng 103524. https://doi.org/10.1016/j.jece.2019.103524

  100. Santos Silva A, Seitovna Kalmakhanova M, Kabykenovna Massalimova B, Sgorlon JG, Jose Luis DdT, Gomes HT (2019) Wet peroxide oxidation of paracetamol using acid activated and Fe/Co-pillared clay catalysts prepared from natural clays. Catalysts 9(9):705. https://doi.org/10.3390/catal9090705

    Article  CAS  Google Scholar 

  101. Wu X, Xia X, Chen Y, Lu Y (2016) Mesoporous Al-incorporated silica-pillared clay interlayer materials for catalytic hydroxyalkylation of phenol to bisphenol F. RSC Adv 6(78):74028–74038. https://doi.org/10.1039/C6RA15161B

    Article  CAS  Google Scholar 

  102. Solsona B, Concepción P, López Nieto JM, Dejoz A, Cecilia JA, Agouram S, Soriano MD, Torres V, Jiménez-Jiménez J, Rodríguez Castellón E (2016) Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Cat Sci Technol 6(10):3419–3429. https://doi.org/10.1039/C5CY01811K

    Article  CAS  Google Scholar 

  103. Chauhan M, Saini VK, Suthar S (2020) Enhancement in selective adsorption and removal efficiency of natural clay by intercalation of Zr-pillars into its layered nanostructure. J Clean Prod 258:120686. https://doi.org/10.1016/j.jclepro.2020.120686

    Article  CAS  Google Scholar 

  104. Aguiar JE, Bezerra BTC, Siqueira ACA, Barrera D, Sapag K, Azevedo DCS, Lucena SMP, Silva IJ (2014) Improvement in the adsorption of anionic and cationic dyes from aqueous solutions: a comparative study using aluminium pillared clays and activated carbon. Sep Sci Technol 49(5):741–751. https://doi.org/10.1080/01496395.2013.862720

    Article  CAS  Google Scholar 

  105. Chauhan M, Saini VK, Suthar S (2019) Removal of pharmaceuticals and personal care products (PPCPs) from water by adsorption on aluminum pillared clay. J Porous Mater. https://doi.org/10.1007/s10934-019-00817-8

  106. Mnasri-Ghnimi S, Frini-Srasra N (2019) Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl Clay Sci 179:105151. https://doi.org/10.1016/j.clay.2019.105151

    Article  CAS  Google Scholar 

  107. Barakan S, Aghazadeh V (2019) Structural modification of nano bentonite by aluminum, iron pillarization and 3D growth of silica mesoporous framework for arsenic removal from gold mine wastewater. J Hazard Mater 378:120779. https://doi.org/10.1016/j.jhazmat.2019.120779

    Article  CAS  Google Scholar 

  108. Yang P, Song M, Kim D, Jung SP, Hwang Y (2019) Synthesis conditions of porous clay heterostructure (PCH) optimized for volatile organic compounds (VOC) adsorption. Korean J Chem Eng 36(11):1806–1813. https://doi.org/10.1007/s11814-019-0369-9

    Article  CAS  Google Scholar 

  109. Vilarrasa-García E, Cecilia JA, Azevedo DCS, Cavalcante CL, Rodríguez-Castellón E (2017) Evaluation of porous clay heterostructures modified with amine species as adsorbent for the CO2 capture. Microporous Mesoporous Mater 249:25–33. https://doi.org/10.1016/j.micromeso.2017.04.049

    Article  CAS  Google Scholar 

  110. Charradi K, Ahmed Z, Aranda P, Chtourou R (2019) Silica/montmorillonite nanoarchitectures and layered double hydroxide-SPEEK based composite membranes for fuel cells applications. Appl Clay Sci 174:77–85. https://doi.org/10.1016/j.clay.2019.03.027

    Article  CAS  Google Scholar 

  111. Specenier PM, Ciuleanu T, Latz JE, Musib LC, Darstein CLS, Vermorken JB (2009) Pharmacokinetic evaluation of platinum derived from cisplatin administered alone and with pemetrexed in head and neck cancer patients. Cancer Chemother Pharmacol 64(2):233–241. https://doi.org/10.1007/s00280-008-0853-0

    Article  CAS  Google Scholar 

  112. Plumb JA, Venugopal B, Oun R, Gomez-Roman N, Kawazoe Y, Venkataramanan NS, Wheate NJ (2012) Cucurbit[7]uril encapsulated cisplatin overcomes cisplatin resistance via a pharmacokinetic effect. Metallomics 4(6):561–567. https://doi.org/10.1039/C2MT20054F

    Article  CAS  Google Scholar 

  113. Ha JU, Xanthos M (2011) Drug release characteristics from nanoclay hybrids and their dispersions in organic polymers. Int J Pharm 414(1):321–331. https://doi.org/10.1016/j.ijpharm.2011.05.028

    Article  CAS  Google Scholar 

  114. Kong X, Jin L, Wei M, Duan X (2010) Antioxidant drugs intercalated into layered double hydroxide: structure and in vitro release. Appl Clay Sci 49(3):324–329. https://doi.org/10.1016/j.clay.2010.06.017

    Article  CAS  Google Scholar 

  115. Joshi GV, Patel HA, Kevadiya BD, Bajaj HC (2009) Montmorillonite intercalated with vitamin B1 as drug carrier. Appl Clay Sci 45(4):248–253. https://doi.org/10.1016/j.clay.2009.06.001

    Article  CAS  Google Scholar 

  116. Amorim R, Vilaça N, Martinho O, Reis RM, Sardo M, Rocha J, Fonseca AM, Baltazar F, Neves IC (2012) Zeolite structures loading with an anticancer compound as drug delivery systems. J Phys Chem C 116(48):25642–25650. https://doi.org/10.1021/jp3093868

    Article  CAS  Google Scholar 

  117. Rimoli MG, Rabaioli MR, Melisi D, Curcio A, Mondello S, Mirabelli R, Abignente E (2008) Synthetic zeolites as a new tool for drug delivery. J Biomed Mater Res A 87A(1):156–164. https://doi.org/10.1002/jbm.a.31763

    Article  CAS  Google Scholar 

  118. Vilaça N, Amorim R, Machado AF, Parpot P, Pereira MFR, Sardo M, Rocha J, Fonseca AM, Neves IC, Baltazar F (2013) Potentiation of 5-fluorouracil encapsulated in zeolites as drug delivery systems for in vitro models of colorectal carcinoma. Colloids Surf B Biointerfaces 112:237–244. https://doi.org/10.1016/j.colsurfb.2013.07.042

    Article  CAS  Google Scholar 

  119. Szegedi A, Popova M, Goshev I, Mihály J (2011) Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release. J Solid State Chem 184(5):1201–1207. https://doi.org/10.1016/j.jssc.2011.03.005

    Article  CAS  Google Scholar 

  120. Szegedi A, Popova M, Goshev I, Klébert S, Mihály J (2012) Controlled drug release on amine functionalized spherical MCM-41. J Solid State Chem 194:257–263. https://doi.org/10.1016/j.jssc.2012.05.030

    Article  CAS  Google Scholar 

  121. Gârea SA, Mihai AI, Ghebaur A, Nistor C, Sârbu A (2015) Porous clay heterostructures: a new inorganic host for 5-fluorouracil encapsulation. Int J Pharm 491(1):299–309. https://doi.org/10.1016/j.ijpharm.2015.05.053

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the finance in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, CNPq, FAPERGS and the PPGQ – UFRGS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nicola, B.P., Bernardo-Gusmão, K., Schwanke, A.J. (2021). Smectite Clay Nanoarchitectures: Rational Design and Applications. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_60

Download citation

Publish with us

Policies and ethics