Skip to main content

Greener Composites from Plant Fibers: Preparation, Structure, and Properties

  • Reference work entry
  • First Online:
Book cover Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Plant fibers are the witness of human civilization and their long journey. They are earliest known grown plants which developed and cultivated as per human needs and values. In terms of industries also, these fibers are significant part of textiles but got eliminated due to the introduction of cheap synthetic textile fibers. However, increasing awareness for environment conservation, global waste accumulation, pollution, and rising high crude oil prices encouraged the governments, researchers, industries, and farmers to look for some environment-friendly composites and polymers as alternatives to synthetic ones like glass, aramid, and carbon. Here, the journey of “biocomposites/green composites” started as the next-generation materials. Green composites synthesize entirely from renewable agricultural resources such as natural fiber (bamboo, banana, jute, wheat, sisal, sugarcane, oil palm, cotton, flax straw, silk, and coconut) and biodegradable polymers (PCL, polyester amide, poly (3-hydroxybutyrate), and polyhydroxyalkanoates). For fabrication of green composites, both components are fused by injection molding, compression molding, thermoforming, pultrusion, resin transfer molding, and hot pressing or mechanical and melt mixing technique. Fractional composition of fiber and biopolymers rely on the required properties of the final composite. In some cases, plant fibers also undergo chemical processing to enhance their technical properties. Nowadays, biocomposites are used by many industries including automobile, biomedical, energy, toys, and sports in place of conventional composites due to their flexibility, adaptability, and tensile strength. This chapter highlights the different aspects of green composites including preparation, and application in various industrial sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Shaver MP (2013) The development of green materials. Green Mater 1:201–202

    Article  Google Scholar 

  2. Satyanarayana KG, Gregorio GCA, Fernando W (2009) Biodegradable composites based on lignocellulosic fibers – an overview. Prog Polym Sci 34:982–1021

    Article  CAS  Google Scholar 

  3. Sorieul M, Dickson A, Hill SJ et al (2016) Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials 9(8):618. https://doi.org/10.3390/ma9080618

    Article  CAS  Google Scholar 

  4. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos A: Appl Sci Manuf 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

    Article  CAS  Google Scholar 

  5. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. https://doi.org/10.1002/anie.201001273

    Article  CAS  Google Scholar 

  6. Narayan R (2013) Bio-based and biodegradable plastics 101. Michigan State University, East Lansing

    Google Scholar 

  7. Luckachan GE, Pillai CKS (2011) Biodegradable polymers – a review on recent trends and emerging perspectives. J Polym Environ 19:637–676

    Article  CAS  Google Scholar 

  8. Adeosun SO, Lawal GI, Balogun Sambo A et al (2012) Review of green polymer nanocomposites. J Min Mater Charact Eng 11:483–514

    Google Scholar 

  9. Faruk O, Bledzki AK, Fink HP et al (2012) Biocomposites reinforced with natural fibers: 2000– 2010. Prog Polym Sci 37(11):1552–1596

    Article  CAS  Google Scholar 

  10. Adeosun SO, Lawal GI, Balogun SA et al (2012) Review of green polymer nanocomposites. J Miner Mater Charact Eng 11(4):483–514. https://doi.org/10.4236/jmmce.2012.114028

    Article  Google Scholar 

  11. Sharma R, Jafari SM, Sharma S (2020) Antimicrobial bionanocomposites and their potential applications in food packaging. Food Control. https://doi.org/10.1016/j.foodcont.2020.107086

  12. Ayesha K (2020) Progress in green nanocomposites for high-performance applications. Mater Res Innov. https://doi.org/10.1080/14328917.2020.1728489

  13. Nida K, Deepak K, Pramendra K (2020) Silver nanoparticles embedded guar gum/gelatin nanocomposite: green synthesis, characterization and antibacterial activity. Colloid Interface Sci Commun 35:1–7. https://doi.org/10.1016/j.colcom.2020.100242

    Article  CAS  Google Scholar 

  14. Mohanty AK, Vivekanandhan S, Pin JM et al (2018) Composites from renewable and sustainable resources: challenges and innovations. Science 362:536–542

    Article  CAS  Google Scholar 

  15. Bhawani SA, Bhat AH, Ahmad FB, Ibrahim MNM (2018) Green polymer nanocomposites and their environmental applications. In: Jawaid M, Khan MM (eds) Polymer-based nanocomposites for energy and environmental applications. Woodhead Publishing, Kidlington, United Kingdom, pp 617–633

    Google Scholar 

  16. Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905–1915

    Article  CAS  Google Scholar 

  17. Khalil HA, Bhat AH, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  Google Scholar 

  18. Kandpal BC, Chaurasia R, Khurana V (2015) Recent advances in green composites – a review. Int J Technol Res Eng 2:742–747

    Google Scholar 

  19. Annapoorani SG, Devi SY, Gopalakrishnan D (2018) Development of green composites. In: Parthiban M, Srikrishnan MR, Kandhavadivu P (eds) Sustainability in fashion and apparels: challenges and solutions. Woodhead publishing, New Delhi, pp 6–10

    Google Scholar 

  20. Pietak A, Korte S, Tan E et al (2007) Atomic force microscopy characterization of the surface wettability of natural fibres. Appl Surf Sci 253(7):3627–3635

    Article  CAS  Google Scholar 

  21. Pereira PHF, Rosa MDF, Cioffi MOH et al (2015) Vegetal fibers in polymeric composites: a review. Polímeros 25(1):9–22

    Article  CAS  Google Scholar 

  22. Bajpai PK, Singh I, Madaan J (2014) Development and characterization of PLA-based green composites: a review. J Thermoplast Compos Mater 27(1):52–81

    Article  CAS  Google Scholar 

  23. Satyanarayana KG (2015) Recent Developments in “green” composites based on plant fibers – preparation, structure property studies. J Bioprocess Biotech 5(2):1

    Google Scholar 

  24. Hassan T, Jamshaid H, Mishra R et al (2020) Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste. Polymers 12(3):654

    Article  CAS  Google Scholar 

  25. Lau KT, Hung PY, Zhu MH et al (2018) Properties of natural fibre composites for structural engineering applications. Compos Part B 136:222–233

    Article  CAS  Google Scholar 

  26. Li X, Liu X (2017) Group III nitride nanomaterials for biosensing. Nanoscale 9(22):7320–7341

    Article  CAS  Google Scholar 

  27. Wen J, Xu Y, Li H et al (2015) Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem Commun 51(57):11346–11358

    Article  CAS  Google Scholar 

  28. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108(2):423–461

    Article  CAS  Google Scholar 

  29. Reiss G, Hütten A (2005) Applications beyond data storage. Nat Mater 4(10):725–726

    Article  CAS  Google Scholar 

  30. Guo D, Xie G, Luo J (2013) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47(1):013001

    Article  Google Scholar 

  31. Lead JR, Hamilton-Taylor J, Davison W et al (1999) Trace metal sorption by natural particles and coarse colloids. Geochim Cosmochim Acta 63(11–12):1661–1670

    Article  CAS  Google Scholar 

  32. Lyvén B, Hassellöv M, Turner DR et al (2003) Competition between iron-and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS. Geochim Cosmochim Acta 67(20):3791–3802

    Article  Google Scholar 

  33. Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123(9):2058–2059

    Article  CAS  Google Scholar 

  34. Gotovac S, Hattori Y, Noguchi D et al (2006) Phenanthrene adsorption from solution on single wall carbon nanotubes. J Phys Chem B 110(33):16219–16224

    Article  CAS  Google Scholar 

  35. Wang JX, Jiang DQ, Gu ZY et al (2006) Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. J Chromatogr A 1137(1):8–14

    Article  CAS  Google Scholar 

  36. Cai YQ, Cai YE, Mou SF et al (2005) Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J Chromatogr A 1081(2):245–247

    Article  CAS  Google Scholar 

  37. Peng X, Li Y, Luan Z et al (2003) Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376(1-2):154–158

    Article  CAS  Google Scholar 

  38. Zhou Q, Ding Y, Xiao J (2006) Sensitive determination of thiamethoxam, imidacloprid and acetamiprid in environmental water samples with solid-phase extraction packed with multiwalled carbon nanotubes prior to high-performance liquid chromatography. Anal Bioanal Chem 385(8):1520–1525

    Article  CAS  Google Scholar 

  39. Yoo JS (1998) Selective gas-phase oxidation at oxide nanoparticles on microporous materials. Catal Today 41:409–432

    Article  CAS  Google Scholar 

  40. Sau TK, Pal A, Pal T (2001) Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J Phys Chem B 105:9266–9272

    Article  CAS  Google Scholar 

  41. Li R, Cai J, Zhang L et al (2013) Properties of cellulose/turmeric powder green composite films. Chem Technol 48(3–4):321–324

    CAS  Google Scholar 

  42. Duan J, Reddy KO, Ashok B et al (2016) Effects of spent tea leaf powder on the properties and functions of cellulose green composite films. J Environ Chem Eng 4:440–448

    Article  CAS  Google Scholar 

  43. Tufail H, Hafsa J, Rajesh M et al (2020) Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste. Polymers 12:654. https://doi.org/10.3390/polym12030654

    Article  CAS  Google Scholar 

  44. Sharma R, Jafari SM, Sharma S (2020) Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control. https://doi.org/10.1016/j.foodcont.2020.107086

  45. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36(12):1766–1782

    Article  CAS  Google Scholar 

  46. Dimitrijevic M, Karabasil N, Boskovic M et al (2015) Safety aspects of nanotechnology applications in food packaging. Proc Food Sci 5:57–60

    Article  Google Scholar 

  47. Hai L, Choi ES, Zhai L et al (2019) Green nanocomposite made with chitin and bamboo nanofibers and its mechanical, thermal and biodegradable properties for food packaging. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.12.124

  48. AraĂşjo CM, Santana MV, Cavalcante AN et al (2020) Cashew-gum-based silver nanoparticles and palygorskite as green nanocomposites for antibacterial applications. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2020.110927

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thangadurai, D. et al. (2021). Greener Composites from Plant Fibers: Preparation, Structure, and Properties. In: Kharissova, O.V., Torres-MartĂ­nez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_21

Download citation

Publish with us

Policies and ethics