Skip to main content

Recent Progress in All-Inorganic Hybrid Materials for Energy Conversion Applications

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

This chapter summarizes the previously reported all-inorganic perovskite solar cells and future perspectives. Energy demand has increased with the increasing population globally. A photovoltaic device, also called solar cell device, has been proven an effective approach to fulfill the energy requirements. Perovskite solar cells have received numerous attentions by the materials scientists globally. The perovskite solar cells exhibited excellent power conversion efficiency, which is much close to the commercial Si solar cells. The perovskite solar cells involve organic–inorganic hybrid perovskite light absorbers or all-inorganic perovskite structures. In recent years, enormous efforts and strategies were made by the scientific community to achieve the high performance of the all-inorganic perovskite solar cells. All-inorganic perovskite solar cells have the potential application at large-scale production for commercial purposes.

Herein, we have reviewed the recent advances in the developments of all-inorganic perovskite solar cells using cesium lead/tin halide perovskite light absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Reddy VS, Kaushik SC, Ranjan KR, Tyagi SK (2013) State-of-the-art of solar thermal power plants. Renew Sust Energ Rev 27:258–273

    Article  Google Scholar 

  2. Chen GY, Seo J, Yang CH, Prasad PN (2013) Nanochemistry and nanomaterials for photovoltaics. Chem Soc Rev 42:8304–8338

    Article  CAS  Google Scholar 

  3. Motlak M, Hamza AM, Hammed MG, Barakat NAM (2019) Cd-doped TiO2 nanofibers as effective working electrode for the dye sensitized solar cells. Mater Lett 246:206–209

    Article  CAS  Google Scholar 

  4. O’Regan B, Grätzel M (1991) A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  5. Shakir S, Abd-ur-Rehman HM, Yunus K, Iwamoto M, Periasamy V (2018) Fabrication of un-doped and magnesium doped TiO2 films by aerosol assisted chemical vapor deposition for dye sensitized solar cells. J Alloy Compound 737:740–747

    Article  CAS  Google Scholar 

  6. Wang C-T, Wang W-P, Lin H-S (2018) Niobium and iron co-doped titania nanobelts for improving charge collection in dye-sensitized TiO2 solar cells. Ceram Int 44:18032–18038

    Article  CAS  Google Scholar 

  7. Ganesh RS, Navaneethan M, Ponnusamy S, Muthamizhchelvan C, Kawasaki S, Shimura Y, Hayakawa Y (2018) Enhanced photon collection of high surface area carbonate-doped mesoporous TiO2 nanospheres for dye sensitized solar cells applications. Mater Res Bull 101:353–362

    Article  CAS  Google Scholar 

  8. Colombo A, Dragonetti C, Roberto D, Ugo R, Manfredi N, Manca P, Abbotto A, Giustina GD, Brusatin G (2019) A carbon doped anatase TiO2 as a promising semiconducting layer in Ru-dyes based dye-sensitized solar cells. Inorg Chim Acta 489:263–268

    Article  CAS  Google Scholar 

  9. Lu WH, Chou C-S, Chen C-Y, Wu P (2017) Preparation of Zr-doped mesoporous TiO2 particles and their applications in the novel working electrode of a dye-sensitized solar cell. Adv Powder Technol 28:2186–2197

    Article  CAS  Google Scholar 

  10. Zhang X, Liu F, Huang QL, Zhou G, Wang Z-S (2011) Dye-sensitized W-doped TiO2 solar cells with a tunable conduction band and suppressed charge recombination. J Phys Chem C 115:12665–12671

    Article  CAS  Google Scholar 

  11. Xiang P, Lv F, Xiao T, Jiang L, Tan X, Shu T (2018) Improved performance of quasi-solid-state dye-sensitized solar cells based on iodine-doped TiO2 spheres photoanodes. J Alloy Compound 741:1142–1147

    Article  CAS  Google Scholar 

  12. Tran VA, Truong TT, Phan TAP, Nguyen TN, Huynh TV, Agrestic A, Pescetellic S, Le TK, Carlo AD, Lund T, Le S-N, Nguyen PT (2017) Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells. Appl Surf Sci 399:515–522

    Article  CAS  Google Scholar 

  13. Hajizadeh-Oghaz M (2019) Synthesis and characterization of Nb-La co-doped TiO2 nanoparticles by sol-gel process for dye-sensitized solar cells. Ceram Int 45:6994–7000

    Article  CAS  Google Scholar 

  14. Shalini S, Balasundaraprabhu R, Kumar TS, Muthukumarasamy N, Prasanna S, Sivakumaran K, Kannan MD (2018) Enhanced performance of sodium doped TiO2 nanorods based dye sensitized solar cells sensitized with extract from petals of Hibiscus Sabdariffa (Roselle). Mater Lett 221:192–195

    Article  CAS  Google Scholar 

  15. Deng J, Wang M, Fang J, Song X, Yang Z, Yuan Z (2019) Synthesis of Zn-doped TiO2 Nano-particles using metal Ti and Zn as raw materials and application in quantum dot sensitized solar cells. J. Alloy Compound. 791:371–379

    Article  CAS  Google Scholar 

  16. Sum TC, Mathews N (2014) Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci 7:2518–2534

    Article  CAS  Google Scholar 

  17. Ahmad K, Ansari SN, Natarajan K, Mobin SM (2019) A two-step modified deposition method based (CH3NH3)3Bi2I9 perovskite: lead free, highly stable and enhanced photovoltaic performance. ChemElectroChem 6:1–8

    Article  CAS  Google Scholar 

  18. Ahmad K, Ansari SN, Natarajan K, Mobin SM (2018) Design and synthesis of 1D-polymeric chain based [(CH3NH3)3Bi2Cl9]n perovskite: a new light absorber material for Lead free perovskite solar cells. ACS Appl Energy Mater 01:2405–2409

    Article  CAS  Google Scholar 

  19. Ahmad K, Mobin SM (2017) Graphene oxide based planar heterojunction perovskite solar cell under ambient condition. New J Chem 41:14253–14258

    Article  CAS  Google Scholar 

  20. Ahmad K, Mohammad A, Mobin SM (2017) Hydrothermally grown α-MnO2 nanorods as highly efficient low cost counter-electrode material for dye-sensitized solar cells and electrochemical sensing applications. Electrochim Acta 252:549–557

    Article  CAS  Google Scholar 

  21. Guo Q, Xu Y, Xiao B, Zhang B, Zhou E, Wang F, Bai Y, Hayat T, Alsaedi A, Tan Z (2017) Effect of energy alignment, electron mobility, and film morphology of perylene diimide based polymers as electron transport layer on the performance of perovskite solar cells. ACS Appl Mater Interfaces 9:10983–10991

    Article  CAS  Google Scholar 

  22. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  Google Scholar 

  23. Wehrenfennig C, Liu M, Snaith HJ, Johnston MB, Herz LM (2014) Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx. Energy Environ Sci 7:2269–2275

    Article  CAS  Google Scholar 

  24. Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3:4088–4093

    Article  CAS  Google Scholar 

  25. Konstantakou M, Stergiopoulos T (2017) A critical review on tin halide perovskite solar cells. J Mater Chem A 5:11518–11549

    Article  CAS  Google Scholar 

  26. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591

    Article  CAS  Google Scholar 

  27. Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM (2014) High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater 26:1584–1589

    Article  CAS  Google Scholar 

  28. Gratzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13:838–842

    Article  CAS  Google Scholar 

  29. Ke W, Fang G, Wang J, Qin P, Tao H, Lei H, Liu Q, Dai X, Zhao X (2014) Perovskite solar cell with an efficient TiO2 compact film. ACS Appl Mater Interfaces 6(18):15959–15965

    Article  CAS  Google Scholar 

  30. Ma J, Guo X, Zhou L, Lin Z, Zhang C, Yang Z, Lu G, Chang J, Hao Y (2018) Enhanced planar perovskite solar cell performance via contact passivation of TiO2/perovskite interface with NaCl doping approach. ACS Appl Energy Mater 1(8):3826–3834

    Article  CAS  Google Scholar 

  31. Peng G, Wu J, Wu S, Xu X, Ellis JE, Xu G, Star A, Gao D (2016) Perovskite solar cells based on bottom-fused TiO2 nanocones. J Mater Chem A 4:1520–1530

    Article  CAS  Google Scholar 

  32. Jeong S, Seo S, Park H, Shin H (2019) Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%. Chem Commun 55:2433–2436

    Article  CAS  Google Scholar 

  33. Lv M, Lv W, Fang X, Sun P, Lin B, Zhang S, Xu X, Ding J, Yuan N (2016) Performance enhancement of perovskite solar cells with a modified TiO2 electron transport layer using Zn-based additives. RSC Adv 6:35044–35050

    Article  CAS  Google Scholar 

  34. Jung K-H, Seo J-Y, Lee S, Shin H, Park N-G (2017) Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2%. J Mater Chem A 5:24790–24803

    Article  CAS  Google Scholar 

  35. Liu D, Kelly TL (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photon 8:133–138

    Article  CAS  Google Scholar 

  36. Mali SS, Patil JV, Kim H, Hong CK (2018) Synthesis of SnO2 nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells. Nanoscale 10:8275–8284

    Article  CAS  Google Scholar 

  37. Wang S, Zhu Y, Liu B, Wang C, Ma R (2019) Introduction of carbon nanodots into SnO2 electron transport layer for efficient and UV stable planar perovskite solar cells. J Mater Chem A 7:5353–5362

    Article  CAS  Google Scholar 

  38. Mahmood K, Swain BS, Kirmani AR, Amassian A (2015) Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material. J Mater Chem A 3:9051–9057

    Article  CAS  Google Scholar 

  39. Ding B, Huang S-Y, Chu QQ, Li Y, Li C-X, Li C-J, Yang G-J (2018) Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J Mater Chem A 6:10233–10242

    Article  CAS  Google Scholar 

  40. Zhong M, Liang Y, Zhang J, Wei Z, Li Q, Xu D (2019) Highly efficient flexible MAPbI3 solar cells with a fullerene derivative-modified SnO2layer as the electron transport layer. J Mater Chem A 7:6659–6664

    Article  CAS  Google Scholar 

  41. Kulkarni A, Praveen CS, Sethi YA, Panmand RP, Arbuj SS, Naik SD, Ghule AV, Kale BB (2017) Nanostructured N-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton Trans 46:14859–14868

    Article  CAS  Google Scholar 

  42. Jiang J, Wang S, Jia X, Fang X, Zhang S, Zhang J, Liu W, Ding J, Yuan N (2018) Totally room-temperature solution-processing method for fabricating flexible perovskite solar cells using an Nb2O5-TiO2 electron transport layer. RSC Adv 8:12823–12831

    Article  CAS  Google Scholar 

  43. Im JH, Jang IH, Pellet N, Grätzel M, Park N-G (2014) Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol 9:927–932

    Article  CAS  Google Scholar 

  44. Mahmood K, Sarwar S, Mehran MT (2017) Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv 7:17044–17062

    Article  CAS  Google Scholar 

  45. Zhang Y, Wang J, Liu X, Li W, Huang F, Peng Y, Zhong J, Cheng Y, Ku Z (2017) Enhancing the performance and stability of carbonbased perovskite solar cells by the cold isostatic pressing method. RSC Adv 7:48958–48961

    Article  CAS  Google Scholar 

  46. Tai Q, You P, Sang H, Liu Z, Hu C, Chan HLW, Yan F (2016) Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat Commun 7:11105

    Article  CAS  Google Scholar 

  47. Eckhardt K, Bon V, Getzschmann J, Grothe J, Wasser FM, Kaskel S (2016) Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic–inorganic material as a potential absorber for photovoltaics. Chem Commun 52:3058–3060

    Article  CAS  Google Scholar 

  48. Dhruba B, Shirai Y, Yanagida M, Miyano K (2019) Tailoring the film morphology and interface band offset of cesium bismuth iodide-based Pb-free perovskite solar cells. J Mater Chem C 7:8335–8343

    Article  Google Scholar 

  49. Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad AA, Sadhanala A, Eperon GE, Pathak SK, Johnston MB, Petrozza A, Herza LM, Snaith HJ (2014) Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci 7:3061–3068

    Article  CAS  Google Scholar 

  50. Singh T, Kulkarni A, Ikegami M, Miyasaka T (2016) Effect of Electron transporting layer on bismuth-based Lead-free perovskite (CH3NH3)3 Bi2I9 for photovoltaic applications. ACS Appl Mater Interfaces 8:14542–14547

    Article  CAS  Google Scholar 

  51. Zhang Z, Li X, Xia X, Wang Z, Huang Z, Lei B, Gao Y (2017) High-quality (CH3NH3)3Bi2I9 film-based solar cells: pushing efficiency up to 1.64%. J Phys Chem Lett 8:4300–4307

    Article  CAS  Google Scholar 

  52. Zhang T, Wang Y, Wang X, Wu M, Liu W, Zhao Y (2019) Organic salt mediated growth of phase pure and stable all-inorganic CsPbX3 (X = I, Br) perovskites for efficient photovoltaics. Sci Bull 23:1773–1779

    Article  CAS  Google Scholar 

  53. Zhang T, Li H, Ban H, Sun Q, Shen Y, Wang M (2020) Efficient CsSnI3-based inorganic perovskite solar cells based on mesoscopic metal oxide framework via incorporating donor element. J Mater Chem A 8:4118–4124

    Article  CAS  Google Scholar 

  54. Liang L, Li Z, Zhou F, Wang Q, Zhang H, Xu Z, Ding L, (Frank) Liu S, Jin Z (2019) The humidity-insensitive fabrication of efficient CsPbI3 solar cells in ambient air. J Mater Chem A 7:26776–26784

    Article  CAS  Google Scholar 

  55. Lau CFJ, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L (2018) Robert Patterson, Shujuan Huang, and Anita ho-Baillie, enhanced performance via partial Lead replacement with calcium for CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. J Mater Chem A 6:5580–5586

    Article  CAS  Google Scholar 

  56. Yao Z, Jin Z, Zhang X, Wang Q, Zhang H, Xu Z, Ding L, (Frank) Liu S (2019) Pseudohalide (SCN—)-doped CsPbI3 for high-performance solar cells. J Mater Chem C 7:13736–13742

    Article  CAS  Google Scholar 

  57. Shi J, Li F, Yuan J, Ling X, Zhou S, Qian Y, Ma W (2019) Efficient and stable CsPbI3 perovskite quantum dots enabled by in-situ ytterbium doping for photovoltaic application. J Mater Chem A 7:20936–20944

    Article  CAS  Google Scholar 

  58. Kima YG, Kim T-Y, Oha JH, Choid KS, Kim Y-J, Kim SY (2017) Cesium lead iodide solar cell controlled by annealing temperature. Phys Chem Chem Phys 19:6257–6263

    Article  CAS  Google Scholar 

  59. Ahmad M, Rehman G, Ali L, Shafiq M, Iqbal R, Ahmad R, Khan T, Jalali-Asadabadi S, Maqbool M, Ahmad I (2017) Structural, electronic and optical properties of CsPbX3 (X=Cl, Br, I) for energy storage and hybrid solar cell applications. J Alloys Compound 705:828–839

    Article  CAS  Google Scholar 

  60. Lin L, Jiang L, Li P, Xiong H, Kang Z, Fan B, Qiu Y (2020) Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells. Sol Energy 198:454–460

    Article  CAS  Google Scholar 

  61. Velu KS, Raj JA, Sathappan P, Bharathi BS, Doss SM, Selvam S, Manisankar P, Stalin T (2019) Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell. Mater Lett 240:132–135

    Article  CAS  Google Scholar 

  62. Ghosh D, Ali MY, Chaudhary DK, Bhattacharyya S (2018) Dependence of halide composition on the stability of highly efficient all inorganic cesium lead halide perovskite quantum dot solar cells. Sol Energy Mater Solar Cells 185:28–35

    Article  CAS  Google Scholar 

  63. Ahmad K, Kumar P, Mobin SM (2020) Inorganic Pb-Free perovskite light absorbers for efficient perovskite solar cells with enhanced performance. Chem Asian J. https://doi.org/10.1002/asia.202000680

  64. Waykar R, Bhorde A, Nair S, Pandharkar S, Gabhale B, Aher R, Rondiya S, Waghmare A, Doiphode V, Punde A, Vairale P, Prasad M, Jadkar S (2020) Environmentally stable lead-free cesium bismuth iodide (Cs3Bi2I9) perovskite: synthesis to solar cell application. J Phy Chem Sol 146:109608

    Article  CAS  Google Scholar 

  65. Baia F, Hub Y, Hua Y, Qiua T, Miaoa X, Zhanga S (2018) Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Sol Energ Mater Sol Cells 184:15–21

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K.A. would like to thank UGC, New Delhi, India for research fellowship. P.K. thanks DST-Inspire, New Delhi, India for research fellowship. S.M.M. acknowledges CSIR, New Delhi, India for financial support (Project File no. 01(2935)/18/EMR-II). The authors also sincerely acknowledge SIC and Discipline of Chemistry, IIT Indore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaikh M. Mobin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahmad, K., Kumar, P., Mobin, S.M. (2021). Recent Progress in All-Inorganic Hybrid Materials for Energy Conversion Applications. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_204

Download citation

Publish with us

Policies and ethics