Skip to main content

Biodegradable Polymer Composite Films for Green Packaging Applications

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

In present scenario, consumption of indispensable nonbiodegradable plastics has become a potential threat to the environment. Their use has been growing up at an alarming rate due to their low cost, easy manufacture, light weight, and water-resistant nature. Hence, we need to think for restricting the use of indispensable plastics and find some alternative to minimize the use of nonbiodegradable waste. Biodegradable polymer composites are composed of polymer and natural fiber. Natural fibers are used as a reinforcing agent in a polymer matrix for enhancing the mechanical property of the resultant composites. Many scientists have reported numerous preparation methods such as compression molding, hand layup, extrusion, injection molding, and solvent casting method to fulfil the industrial aspects as compared to synthetic plastics for green packaging application. Some strategies are also applied for enhancing the adhesion between polymer and natural fiber. After listing the numerous sustainable synthesizing methods, various testing methods such as water vapor transmission rate, water vapor permeability, optical characteristics test, thermal stability test, mechanical stability, and impact strength are presented in this chapter to check the suitability of green packaging film.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dayo AQ, Gao B-c, Wang J, W-b L, Derradji M, Shah AH, Babar AA (2017) Natural hemp fiber reinforced polybenzoxazine composites: curing behavior, mechanical and thermal properties. Compos Sci Technol 144:114–124

    Article  CAS  Google Scholar 

  2. Chaitanya S, Singh AP, Singh I (2017) Natural fiber-reinforced biodegradable and bioresorbable polymer composites. United Kingdom: Woodhead Publishing Series in Composites Science and Technology, Elsevier, pp 163–179

    Google Scholar 

  3. Zegaoui A, Derradji M, Ma R-k, W-a C, Medjahed A, W-b L, Dayo AQ, Wang J, Wang G-x (2018) Influence of fiber volume fractions on the performances of alkali modified hemp fibers reinforced cyanate ester/benzoxazine blend composites. Mater Chem Phys 213:146–156

    Article  CAS  Google Scholar 

  4. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68

    CAS  Google Scholar 

  5. Chawla K, Bastos A (1979) The mechanical properties of jute fibers and polyester/jute composites. Mech Behav Mater 3:191–196

    Google Scholar 

  6. Dhakal HN, Sarasini F, Santulli C, Tirillò J, Zhang Z, Arumugam V (2015) Effect of basalt fibre hybridisation on post-impact mechanical behaviour of hemp fibre reinforced composites. Compos A: Appl Sci Manuf 75:54–67

    Article  CAS  Google Scholar 

  7. Laadila MA, Hegde K, Rouissi T, Brar SK, Galvez R, Sorelli L, Cheikh RB, Paiva M, Abokitse K (2017) Green synthesis of novel biocomposites from treated cellulosic fibers and recycled bio-plastic polylactic acid. J Clean Prod 164:575–586

    Article  CAS  Google Scholar 

  8. Shahinur S, Hasan M (2019) Jute/coir/banana fiber reinforced bio-composites: critical review of design, fabrication, properties and applications. In: Reference module in materials science and materials engineering. Japan: Elsevier

    Google Scholar 

  9. Senthilkumar K, Saba N, Rajini N, Chandrasekar M, Jawaid M, Siengchin S, Alotman OY (2018) Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Constr Build Mater 174:713–729

    Article  CAS  Google Scholar 

  10. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  11. Santhosh SK, Hiremath SS (2019) Natural fiber reinforced composites in the context of biodegradability: a review. In: Reference module in materials science and materials engineering. India: Elsevier

    Google Scholar 

  12. Zuccarello B, Marannano G, Mancino A (2018) Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers. Compos Struct 194:575–583

    Article  Google Scholar 

  13. Yang S, Bai S, Wang Q (2018) Sustainable packaging biocomposites from polylactic acid and wheat straw: enhanced physical performance by solid state shear milling process. Compos Sci Technol 158:34–42

    Article  CAS  Google Scholar 

  14. Srivastava KR, Singh MK, Mishra PK, Srivastava P (2019) Pretreatment of banana pseudostem fibre for green composite packaging film preparation with polyvinyl alcohol. J Polym Res 26:95

    Article  Google Scholar 

  15. Islam MS, Rahman MM, Hasan M (2019) Kenaf fiber based bio-composites: processing, characterization and potential applications. In: Reference module in materials science and materials engineering. Italy: Elsevier

    Google Scholar 

  16. Sánchez-Safont EL, Aldureid A, Lagarón JM, Gámez-Pérez J, Cabedo L (2018) Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Compos Part B 145:215–225

    Article  Google Scholar 

  17. Perumal AB, Sellamuthu PS, Nambiar RB, Sadiku ER, Phiri G, Jayaramudu J (2018) Effects of multiscale rice straw (Oryza sativa) as reinforcing filler in montmorillonite-polyvinyl alcohol biocomposite packaging film for enhancing the storability of postharvest mango fruit (Mangifera indica L.). Appl Clay Sci 158:1–10

    Article  CAS  Google Scholar 

  18. Mustapa IR, Shanks RA, Kong I, Daud N (2018) Morphological structure and thermomechanical properties of hemp fibre reinforced poly(lactic acid) nanocomposites plasticized with tributyl citrate. Mater Today Proc 5:3211–3218

    Article  CAS  Google Scholar 

  19. Khan BA, Na H, Chevali V, Warner P, Zhu J, Wang H (2018) Glycidyl methacrylate-compatibilized poly (lactic acid)/hemp hurd biocomposites: processing, crystallization, and thermo-mechanical response. J Mater Sci Technol 34:387–397

    Article  Google Scholar 

  20. Dhakal HN, Ismail SO, Zhang Z, Barber A, Welsh E, Maigret J-E, Beaugrand J (2018) Development of sustainable biodegradable lignocellulosic hemp fiber/polycaprolactone biocomposites for light weight applications. Compos A: Appl Sci Manuf 113:350–358

    Article  CAS  Google Scholar 

  21. Orasugh JT, Saha NR, Rana D, Sarkar G, Mollick MMR, Chattoapadhyay A, Mitra BC, Mondal D, Ghosh SK, Chattopadhyay D (2018) Jute cellulose nano-fibrils/hydroxypropylmethylcellulose nanocomposite: a novel material with potential for application in packaging and transdermal drug delivery system. Ind Crop Prod 112:633–643

    Article  CAS  Google Scholar 

  22. Kargarzadeh H, Johar N, Ahmad I (2017) Starch biocomposite film reinforced by multiscale rice husk fiber. Compos Sci Technol 151:147–155

    Article  CAS  Google Scholar 

  23. Sirviö JA, Kolehmainen A, Liimatainen H, Niinimäki J, Hormi OE (2014) Biocomposite cellulose-alginate films: promising packaging materials. Food Chem 151:343–351

    Article  Google Scholar 

  24. Luzi F, Fortunati E, Jiménez A, Puglia D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crop Prod 93:276–289

    Article  CAS  Google Scholar 

  25. Averous L, Fringant C, Moro L (2001) Starch-based biodegradable materials suitable for thermoforming packaging. Starch-Stärke 53:368–371

    Article  CAS  Google Scholar 

  26. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  CAS  Google Scholar 

  27. Palmowski L, Müller J (2000) Influence of the size reduction of organic waste on their anaerobic digestion. Water Sci Technol 41:155–162

    Article  CAS  Google Scholar 

  28. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure. Reactions 613:1960–1982

    Google Scholar 

  29. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass–an overview. Bioresour Technol 199:76–82

    Article  CAS  Google Scholar 

  30. Fung K, Xing X, Li R, Tjong S, Mai Y-W (2003) An investigation on the processing of sisal fibre reinforced polypropylene composites. Compos Sci Technol 63:1255–1258

    Article  CAS  Google Scholar 

  31. Lee B-H, Kim H-J, Yu W-R (2009) Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties. Fibers Polym 10:83–90

    Article  CAS  Google Scholar 

  32. Lee B-H, Kim H-S, Lee S, Kim H-J, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579

    Article  CAS  Google Scholar 

  33. Rane AV, Kanny K, Abitha VK, Thomas S (2018) Chapter 5 – Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Mohan Bhagyaraj S, Oluwafemi OS, Kalarikkal N, Thomas S (eds) Synthesis of inorganic nanomaterials. South africa: Woodhead Publishing, pp 121–139

    Google Scholar 

  34. Râpă M, Miteluţ AC, Tănase EE, Grosu E, Popescu P, Popa ME, Rosnes JT, Sivertsvik M, Darie-Niţă RN, Vasile C (2016) Influence of chitosan on mechanical, thermal, barrier and antimicrobial properties of PLA-biocomposites for food packaging. Compos Part B 102:112–121

    Article  Google Scholar 

  35. Naskar A, Khan H, Sarkar R, Kumar S, Halder D, Jana S (2018) Anti-biofilm activity and food packaging application of room temperature solution process based polyethylene glycol capped Ag-ZnO-graphene nanocomposite. Mater Sci Eng C 91:743–753

    Article  CAS  Google Scholar 

  36. Xu K, Liu C, Kang K, Zheng Z, Wang S, Tang Z, Yang W (2018) Isolation of nanocrystalline cellulose from rice straw and preparation of its biocomposites with chitosan: physicochemical characterization and evaluation of interfacial compatibility. Compos Sci Technol 154:8–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Laxmi Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dixit, S., Yadav, V.L. (2021). Biodegradable Polymer Composite Films for Green Packaging Applications. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_157

Download citation

Publish with us

Policies and ethics