Abstract
Polysaccharides are proved to be one of the important cosmetic ingredients especially for skin care products. Among which, those of renewable, eco-friendly, and accountable for circular bio-economy productions are highly in demands of the cosmetic consumers, which hit the interests of the researchers. Of which, biotechnological production route on the basis of microbial produced polysaccharides is the appointed choices. In this chapter, microbial polysaccharides applicable for cosmetics are summarized exclusively for those of skin care applications. The specialty bacterial and fungal polysaccharides, those of emerging mushroom, producing and commercializing for cosmetics are enclosed. In addition, challenges and future prospects of microbial polysaccharides in cosmetic industries in the sectors of packaging and delivery system are included in the context as well as the promising sources and productions.
Similar content being viewed by others
References
Ammala A. Biodegradable polymers as encapsulation materials for cosmetics and personal care markets. Int J Cosmet Sci. 2013;35:113–24.
Anderson LA, Islam MA, Prather KLJ. Synthetic biology strategies for improving microbial synthesis of “green” biopolymers. J Biol Chem. 2018;293:5053–61.
Balakrishnan B, Mohanty M, Fernandez AC, Mohanan PV, Jayakrishnan A. Evaluation of the effect of incorporation of dibutyl cyclic adenosine monophosphate in an insitu forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2006;27:1355–61.
Berdal M, Apelbom HI, Eikerm JH, Lund A, Zykova S, Busund L-T, Seljelid R, Jenssen T. Aminated β-1,3-d-glucan improves wound healing in diabetic db/db mice. Wound Repair Regen. 2007;15:825–32.
Cerqueira MT, da Silva LP, Santos TC, Pirraco RP, Correlo VM, Reis RL, Marques AP. Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization. ACS Appl Mater Interfaces. 2014;6:19668–79.
Chen P, Cho SY, Jin HJ. Modification and applications of bacterial cellulose in polymer science. Macromol Res. 2010;18:309–20.
Cho HK, Cho JH, Jeong SH, Cho DC, Yeum JH, Cheong IW. Polymeric vehicles for topical delivery and related analytical methods. Arch Pharm Res. 2014;37:423–34.
DeAngelis PL. Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl Microbiol Biotechnol. 2012;94:295–305.
Donot F, Fontana A, Baccou JC, Schorr-Galindo S. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carb Polym. 2012;87:951–62.
Dubuisson P, Picard C, Grisel M, Savary G. How does composition influence the texture of cosmetic emulsions? Colloid Surface A. 2018;536:38–46.
El Enshasy HA, Hatti-Kaul R. Mushroom immunomodulators: unique molecules with unlimited applications. Trend Biotechnol. 2013;31:668–77.
Fiume MM, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JJG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Safety assessment of microbial polysaccharide gums as used in cosmetics. Int J Toxicol. 2016;35:5S–49S.
Freitas F, Alves VD, Reis MAM. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trend Biotechnol. 2011;29:388–98.
Freitas F, Alves VD, Reis MA, Crespo JG, Coelhoso IM. Microbial polysaccharide-based membranes: current and future applications. J Appl Polym Sci. 2014;131:40–7.
Giese EC, Gascon J, Anzelmo G, Barbosa AM, da Cunha MAAA, Dekker RFH. Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-D-glucans. Int J Biol Macromol. 2015;72:125–30.
Gontard N, Sonesson U, Birkved M, Majone M, Bolzonella D, Celli A, Angellier-Coussy H, Jang G-W, Verniquet A, Broeze J. A research challenges vision regarding management of agricultural waste in a circular bio-based economy. Crit Rev Environ Sci Technol. 2018;48:614–54.
Hay ID, Rehman ZU, Moradali MF, Wang Y, Rehm BHA. Microbial alginate production, modification and its applications. Microb Biotecnol. 2013;6:637–50.
Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BHA. Genetics and regulation of bacterial alginate production. Environ Microbiol. 2014;16:2997–3011.
Huertas MJ, Matilla MA. Training bacteria to product environmentally friendly polymers of industrial and medical relevance. Microb Biotechnol. 2020;13:14–6.
Ismali NA, Amin KAM, Majid FAA, Razali MH. Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: physicochemical, mechanical, antibacterial properties and wound healing studies. Mater Sci Eng C. 2019;103:109770. https://doi.org/10.1016/j.msec.2019.109770.
Kanlayavattanakul M, Lourith N. Biopolysaccharides for skin hydrating cosmetics. In: Ramawat KG, Mérillon J-M, editors. Polysaccharides: bioactivity and biotechnology. Cham: Springer; 2015. p. 1867–92.
Kanlayavattanakul M, Lourith N. Cosmetics: active polymers. In: Mirshra M, editor. Encyclopedia of polymer. Boca Raton: CRC Press; 2019. p. 705–21.
Kim KH, Chung CB, Kim YH, Kim KS, Han CS, Kim CH. Cosmeceutical properties of levan produced by Zymomonas mobilis. J Cosmet Sci. 2005;56:395–406.
Kim KH, Park SJ, Lee YJ, Lee JE, Song CH, Choi SH, Ku SK, Kang SJ. Inhibition of UVB-induced skin damage by exopolymers from Aureobasidium pullans SM-2001 in hairless mice. Basic Clin Pharmacol Toxicol. 2015;116:73–86.
Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P, Marsch S. Nanocelluloses as innovative polymers in research and application. Adv Polym Sci. 2006;205:49–96.
Krochta J, De Mulder-Johnson C. Scientific status summary – edible and biodegradable polymer films. Food Technol. 1997;51:61–74.
Kwon AH, Qiu Z, Hashimoto M, Yamamoto K, Kimura T. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am J Surg. 2009;197:503–9.
Lin YC, Vaseeharn B, Chen J-C. Identification of the extracellular copper–zinc superoxide dismutase (ecCuZnSOD) gene of the mud crab Scylla serrata and its expression following β-glucan and peptidoglycan injections. Mol Immonol. 2008;45:1346–55.
Lin SM, Baek CY, Jung J-H, Kim WS, Song H-Y, Lee JH, Ji HJ, Zhi Y, Kang BS, Bahn Y-S, Seo HS, Lim S. Antioxidant activities of an exopolysaccharide (DeinoPol) produced by the extreme radiation-resistant bacterium Deinococcus radiodurans. Sci Rep. 2020;10:55. https://doi.org/10.1038/s41598-019-56141-3.
Lochhead RY. A review of recent advances in the polymeric delivery of attributes in cosmetics and personal care products. In: Morgan S, Lochhead RY, editors. Polymeric delivery of therapeutics. Washington, DC: ACS; 2010.
Lourith N, Kanlayavattanakul M. Biopolymeric agents for skin wrinkle treatment. J Cosmet Laser Ther. 2016;18:301–10.
Lourith N, Kanlayavattanakul M. Polymer in cosmetics. Bangkok: Chulalongkorn University Press; 2018.
Lourith N, Kanlayavattanakul M. Tissue engineering: polymeric dermal filler. In: Mirshra M, editor. Encyclopedia of polymer. Boca Raton: CRC Press; 2019. p. 2676–82.
Manconi M, Manca ML, Caddeo C, Valenti D, Cencetti C, Diez-Sales O, Nacher A, Mir-Palomo S, Terencio MC, Demurtas D, Gomez-Fernandez JC, Aranda FJ, Fadda AM, Matricardi P. Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin. Nanomed Nanotechnol. 2018;14:569–79.
Mattila PH, Marnila P, Pihlanto A. Wild and cultivated mushrooms. In: Yahia EM, editor. Fruit and vegetable phytochemicals: chemistry and human health. 2nd ed. Hoboken: Wiley; 2018. p. 1279–304.
Mekonnen T, Mussone P, Khalil H, Bressler D. Progress in bio-based plastics and plasticizing modifications. J Mater Chem A. 2013;1:13379–98.
Musazzi UM, Cencetti C, Franzé S, Zoratto N, Di Meo C, Procacci P, Matricardi P, Cilurzo F. Gellan nanohydrogels: novel nanodelivery systems for cutaneous administration of piroxicam. Mol Pharm. 2018;15:1028–36.
Nakapong S, Pichyangkura R, Ito K, Iizuka M, Pongsawasdi P. High expression level of levansucraase from Bacillus licheniformis RN-01 and synthesis of levan nanoparticles. Int J Biol Macromol. 2013;54:30–6.
Nguyen HTP, Allard-Vannier E, Gaillard C, Eddaoudi I, Miloudi L, Soucé M, Courpa I, Munnier E. On the interactions of alginate-base core-shell nanocarriers with keratinocytes in vitro. Colloids Surf B Biointerfaces. 2016;142:272–80.
Pan H, Jiang B, Chen J, Jin Z. Assessment of the physical, mechanical, and moisture-retention properties of pullulan-based ternary co-blended films. Carb Polym. 2014;112:94–101.
Rehm BH. Bacterial polymers: biosynthesis, modifications and applications. Nature Rev Microbiol. 2010;8:578–92.
Rhim J-W, Ng PKW. Natural polymer-based nanocomposite films for packaging application. Crit Rev Food Sci Nutr. 2007;47:411–33.
Shah N, Ul-Islam M, Khattak WA, Park JK. Overview of bacterial cellulose composites: a multiprupose advanced material. Carb Polym. 2013;98:1585–98.
Srikanth R, Siddartha G, Sundhar RCH, Harish BS, Janaki RM, Uppuluri KB. Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carb Polym. 2015;123:8–16.
Trovatti E, Fernandes SCM, Rubatat L, Perez DDS, Freire CSR, Silverstre AJD, Neto CP. Pullulan-nanofibrillated cellulose composite films with improved thermal and mechanical properties. Compos Sci Technol. 2012;72:1556–61.
Wiegand C, Heinze T, Hipler UC. Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for photophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regener. 2009;17:511–21.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this entry
Cite this entry
Kanlayavattanakul, M., Lourith, N. (2021). Natural Polysaccharides for Skin Care. In: Oliveira, J., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-35734-4_46-1
Download citation
DOI: https://doi.org/10.1007/978-3-030-35734-4_46-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35734-4
Online ISBN: 978-3-030-35734-4
eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences