Skip to main content

Natural Polysaccharides for Skin Care

  • Living reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

Polysaccharides are proved to be one of the important cosmetic ingredients especially for skin care products. Among which, those of renewable, eco-friendly, and accountable for circular bio-economy productions are highly in demands of the cosmetic consumers, which hit the interests of the researchers. Of which, biotechnological production route on the basis of microbial produced polysaccharides is the appointed choices. In this chapter, microbial polysaccharides applicable for cosmetics are summarized exclusively for those of skin care applications. The specialty bacterial and fungal polysaccharides, those of emerging mushroom, producing and commercializing for cosmetics are enclosed. In addition, challenges and future prospects of microbial polysaccharides in cosmetic industries in the sectors of packaging and delivery system are included in the context as well as the promising sources and productions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ammala A. Biodegradable polymers as encapsulation materials for cosmetics and personal care markets. Int J Cosmet Sci. 2013;35:113–24.

    Article  CAS  PubMed  Google Scholar 

  • Anderson LA, Islam MA, Prather KLJ. Synthetic biology strategies for improving microbial synthesis of “green” biopolymers. J Biol Chem. 2018;293:5053–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balakrishnan B, Mohanty M, Fernandez AC, Mohanan PV, Jayakrishnan A. Evaluation of the effect of incorporation of dibutyl cyclic adenosine monophosphate in an insitu forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2006;27:1355–61.

    Article  CAS  PubMed  Google Scholar 

  • Berdal M, Apelbom HI, Eikerm JH, Lund A, Zykova S, Busund L-T, Seljelid R, Jenssen T. Aminated β-1,3-d-glucan improves wound healing in diabetic db/db mice. Wound Repair Regen. 2007;15:825–32.

    Article  PubMed  Google Scholar 

  • Cerqueira MT, da Silva LP, Santos TC, Pirraco RP, Correlo VM, Reis RL, Marques AP. Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization. ACS Appl Mater Interfaces. 2014;6:19668–79.

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Cho SY, Jin HJ. Modification and applications of bacterial cellulose in polymer science. Macromol Res. 2010;18:309–20.

    Article  CAS  Google Scholar 

  • Cho HK, Cho JH, Jeong SH, Cho DC, Yeum JH, Cheong IW. Polymeric vehicles for topical delivery and related analytical methods. Arch Pharm Res. 2014;37:423–34.

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis PL. Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl Microbiol Biotechnol. 2012;94:295–305.

    Article  CAS  PubMed  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carb Polym. 2012;87:951–62.

    Article  CAS  Google Scholar 

  • Dubuisson P, Picard C, Grisel M, Savary G. How does composition influence the texture of cosmetic emulsions? Colloid Surface A. 2018;536:38–46.

    Article  CAS  Google Scholar 

  • El Enshasy HA, Hatti-Kaul R. Mushroom immunomodulators: unique molecules with unlimited applications. Trend Biotechnol. 2013;31:668–77.

    Article  CAS  Google Scholar 

  • Fiume MM, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JJG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Safety assessment of microbial polysaccharide gums as used in cosmetics. Int J Toxicol. 2016;35:5S–49S.

    Article  PubMed  Google Scholar 

  • Freitas F, Alves VD, Reis MAM. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trend Biotechnol. 2011;29:388–98.

    Article  CAS  Google Scholar 

  • Freitas F, Alves VD, Reis MA, Crespo JG, Coelhoso IM. Microbial polysaccharide-based membranes: current and future applications. J Appl Polym Sci. 2014;131:40–7.

    Article  CAS  Google Scholar 

  • Giese EC, Gascon J, Anzelmo G, Barbosa AM, da Cunha MAAA, Dekker RFH. Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-D-glucans. Int J Biol Macromol. 2015;72:125–30.

    Article  CAS  PubMed  Google Scholar 

  • Gontard N, Sonesson U, Birkved M, Majone M, Bolzonella D, Celli A, Angellier-Coussy H, Jang G-W, Verniquet A, Broeze J. A research challenges vision regarding management of agricultural waste in a circular bio-based economy. Crit Rev Environ Sci Technol. 2018;48:614–54.

    Article  Google Scholar 

  • Hay ID, Rehman ZU, Moradali MF, Wang Y, Rehm BHA. Microbial alginate production, modification and its applications. Microb Biotecnol. 2013;6:637–50.

    Article  CAS  Google Scholar 

  • Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BHA. Genetics and regulation of bacterial alginate production. Environ Microbiol. 2014;16:2997–3011.

    Article  CAS  PubMed  Google Scholar 

  • Huertas MJ, Matilla MA. Training bacteria to product environmentally friendly polymers of industrial and medical relevance. Microb Biotechnol. 2020;13:14–6.

    Article  PubMed  Google Scholar 

  • Ismali NA, Amin KAM, Majid FAA, Razali MH. Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: physicochemical, mechanical, antibacterial properties and wound healing studies. Mater Sci Eng C. 2019;103:109770. https://doi.org/10.1016/j.msec.2019.109770.

    Article  CAS  Google Scholar 

  • Kanlayavattanakul M, Lourith N. Biopolysaccharides for skin hydrating cosmetics. In: Ramawat KG, Mérillon J-M, editors. Polysaccharides: bioactivity and biotechnology. Cham: Springer; 2015. p. 1867–92.

    Chapter  Google Scholar 

  • Kanlayavattanakul M, Lourith N. Cosmetics: active polymers. In: Mirshra M, editor. Encyclopedia of polymer. Boca Raton: CRC Press; 2019. p. 705–21.

    Google Scholar 

  • Kim KH, Chung CB, Kim YH, Kim KS, Han CS, Kim CH. Cosmeceutical properties of levan produced by Zymomonas mobilis. J Cosmet Sci. 2005;56:395–406.

    CAS  PubMed  Google Scholar 

  • Kim KH, Park SJ, Lee YJ, Lee JE, Song CH, Choi SH, Ku SK, Kang SJ. Inhibition of UVB-induced skin damage by exopolymers from Aureobasidium pullans SM-2001 in hairless mice. Basic Clin Pharmacol Toxicol. 2015;116:73–86.

    Article  CAS  PubMed  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P, Marsch S. Nanocelluloses as innovative polymers in research and application. Adv Polym Sci. 2006;205:49–96.

    Article  CAS  Google Scholar 

  • Krochta J, De Mulder-Johnson C. Scientific status summary – edible and biodegradable polymer films. Food Technol. 1997;51:61–74.

    Google Scholar 

  • Kwon AH, Qiu Z, Hashimoto M, Yamamoto K, Kimura T. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am J Surg. 2009;197:503–9.

    Article  PubMed  Google Scholar 

  • Lin YC, Vaseeharn B, Chen J-C. Identification of the extracellular copper–zinc superoxide dismutase (ecCuZnSOD) gene of the mud crab Scylla serrata and its expression following β-glucan and peptidoglycan injections. Mol Immonol. 2008;45:1346–55.

    Article  CAS  Google Scholar 

  • Lin SM, Baek CY, Jung J-H, Kim WS, Song H-Y, Lee JH, Ji HJ, Zhi Y, Kang BS, Bahn Y-S, Seo HS, Lim S. Antioxidant activities of an exopolysaccharide (DeinoPol) produced by the extreme radiation-resistant bacterium Deinococcus radiodurans. Sci Rep. 2020;10:55. https://doi.org/10.1038/s41598-019-56141-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lochhead RY. A review of recent advances in the polymeric delivery of attributes in cosmetics and personal care products. In: Morgan S, Lochhead RY, editors. Polymeric delivery of therapeutics. Washington, DC: ACS; 2010.

    Google Scholar 

  • Lourith N, Kanlayavattanakul M. Biopolymeric agents for skin wrinkle treatment. J Cosmet Laser Ther. 2016;18:301–10.

    Article  PubMed  Google Scholar 

  • Lourith N, Kanlayavattanakul M. Polymer in cosmetics. Bangkok: Chulalongkorn University Press; 2018.

    Google Scholar 

  • Lourith N, Kanlayavattanakul M. Tissue engineering: polymeric dermal filler. In: Mirshra M, editor. Encyclopedia of polymer. Boca Raton: CRC Press; 2019. p. 2676–82.

    Google Scholar 

  • Manconi M, Manca ML, Caddeo C, Valenti D, Cencetti C, Diez-Sales O, Nacher A, Mir-Palomo S, Terencio MC, Demurtas D, Gomez-Fernandez JC, Aranda FJ, Fadda AM, Matricardi P. Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin. Nanomed Nanotechnol. 2018;14:569–79.

    Article  CAS  Google Scholar 

  • Mattila PH, Marnila P, Pihlanto A. Wild and cultivated mushrooms. In: Yahia EM, editor. Fruit and vegetable phytochemicals: chemistry and human health. 2nd ed. Hoboken: Wiley; 2018. p. 1279–304.

    Google Scholar 

  • Mekonnen T, Mussone P, Khalil H, Bressler D. Progress in bio-based plastics and plasticizing modifications. J Mater Chem A. 2013;1:13379–98.

    Article  CAS  Google Scholar 

  • Musazzi UM, Cencetti C, Franzé S, Zoratto N, Di Meo C, Procacci P, Matricardi P, Cilurzo F. Gellan nanohydrogels: novel nanodelivery systems for cutaneous administration of piroxicam. Mol Pharm. 2018;15:1028–36.

    Article  CAS  PubMed  Google Scholar 

  • Nakapong S, Pichyangkura R, Ito K, Iizuka M, Pongsawasdi P. High expression level of levansucraase from Bacillus licheniformis RN-01 and synthesis of levan nanoparticles. Int J Biol Macromol. 2013;54:30–6.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HTP, Allard-Vannier E, Gaillard C, Eddaoudi I, Miloudi L, Soucé M, Courpa I, Munnier E. On the interactions of alginate-base core-shell nanocarriers with keratinocytes in vitro. Colloids Surf B Biointerfaces. 2016;142:272–80.

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Jiang B, Chen J, Jin Z. Assessment of the physical, mechanical, and moisture-retention properties of pullulan-based ternary co-blended films. Carb Polym. 2014;112:94–101.

    Article  CAS  Google Scholar 

  • Rehm BH. Bacterial polymers: biosynthesis, modifications and applications. Nature Rev Microbiol. 2010;8:578–92.

    Article  CAS  Google Scholar 

  • Rhim J-W, Ng PKW. Natural polymer-based nanocomposite films for packaging application. Crit Rev Food Sci Nutr. 2007;47:411–33.

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Ul-Islam M, Khattak WA, Park JK. Overview of bacterial cellulose composites: a multiprupose advanced material. Carb Polym. 2013;98:1585–98.

    Article  CAS  Google Scholar 

  • Srikanth R, Siddartha G, Sundhar RCH, Harish BS, Janaki RM, Uppuluri KB. Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carb Polym. 2015;123:8–16.

    Article  CAS  Google Scholar 

  • Trovatti E, Fernandes SCM, Rubatat L, Perez DDS, Freire CSR, Silverstre AJD, Neto CP. Pullulan-nanofibrillated cellulose composite films with improved thermal and mechanical properties. Compos Sci Technol. 2012;72:1556–61.

    Article  CAS  Google Scholar 

  • Wiegand C, Heinze T, Hipler UC. Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for photophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regener. 2009;17:511–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayuree Kanlayavattanakul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kanlayavattanakul, M., Lourith, N. (2021). Natural Polysaccharides for Skin Care. In: Oliveira, J., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-35734-4_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35734-4_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35734-4

  • Online ISBN: 978-3-030-35734-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics