Skip to main content

Rotor Blade Design, Number of Blades, Performance Characteristics

  • Reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics
  • 1827 Accesses

Abstract

The design of the blade planform relates to the choices about the main geometrical characteristics of the blade, namely, chord, twist and blade thickness. In addition to these main quantities, the blade sweep, prebend and cone angle can be considered part of the planform design, though from a purely aerodynamic point of view, their effect on the overall performance of the wind turbine is limited. For a full three-dimensional description of the blade geometry, we also need to define the pitching axis and the stacking axis (i.e. the relative positioning of sections with regard to the pitching axis). These parameters do not affect the 2D aerodynamics of the individual blade sections, but they can have a secondary effect on 3-D aerodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For an arbitrary iopt = 5∘ in the plot.

References

  • Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J ACM 17(4):589–602

    Article  Google Scholar 

  • Anstock F, Schütt M, Schorbach V (2019) A new approach for comparability of two-and three-bladed 20 MW offshore wind turbines. J Phys Conf Ser 1356(1):012008 IOP Publishing

    Google Scholar 

  • Bergami L, Madsen HA, Rasmussen F (2014) A two-bladed teetering hub configuration for the DTU 10 MW RWT: loads considerations. In: European wind energy conference & exhibition 2014. European Wind Energy Association (EWEA)

    Google Scholar 

  • Bortolotti P, Bottasso CL, Croce A (2016) Combined preliminary-detailed design of wind turbines. Wind Energy Sci 1(1):71

    Article  Google Scholar 

  • Bottasso CL, Croce A (2010) Cp-Lambda a code for performance, loads, Aeroelasticity by Multi-Body Dynamics Analysis

    Google Scholar 

  • Bottasso CL, Campagnolo F, Croce A (2012) Multi-disciplinary constrained optimization of wind turbines. Multibody Sys Dyn 27(1):21–53

    Article  MathSciNet  Google Scholar 

  • Bottasso CL, Croce A, Sartori L, Grasso F (2014) Free-form design of rotor blades. J Phys Conf Ser 524(1). IOP Publishing

    Google Scholar 

  • Burton T, Jenkins N, Sharpe D, Bossanyi E (2001) Wind energy handbook, 2nd edn. Wiley

    Book  Google Scholar 

  • Chaviaropoulos PK, Sieros G (2014) Design of low induction rotors for use in large offshore wind farms. In: EWEA 2014, Barcelona

    Google Scholar 

  • Chaviaropoulos PK, Beurskens HJM, Voutsinas SG (2013) Moving towards large (r) rotors-is that a good idea. In: EWEA 2013 Conference

    Google Scholar 

  • Civati M, Sartori L, Croce A (2018) Design of a two-bladed 10 MW rotor with teetering hub. J Phys Conf Ser 1037:042007

    Article  Google Scholar 

  • Dykes KL, Damiani RR, Graf PA, Scott GN, King RN, Guo Y, Quick J, Sethuraman L, Veers PS, Ning A (2018) Wind turbine optimization with WISDEM. Technical report, National Renewable Energy Lab.(NREL), Golden, CO (United States)

    Google Scholar 

  • Glauert H (1935) Airplane propellers. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Gomez-Iradi S, Steijl R, Barakos GN (2009) Development and validation of a CFD technique for the aerodynamic analysis of HAWT. J Solar Energy Eng Trans ASM 131(3)

    Google Scholar 

  • Gupta A, Amano RS (2012) CFD analysis of wind turbine blade with winglets. In: International design engineering technical conferences and computers and information in engineering conference, vol 45042, pp 843–849. American Society of Mechanical Engineers

    Google Scholar 

  • Hansen MOL (2008) Aerodynamics of wind turbines, 2nd edn. Earthscan

    Google Scholar 

  • Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen A (2006) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42(4):285–330

    Article  Google Scholar 

  • Heath C, Gray J (2012) OpenMDAO: framework for flexible multidisciplinary design, analysis and optimization methods. In: Proceedings of the 53rd AIAA structures, structural dynamics and materials conference, Honolulu

    Google Scholar 

  • Heinz JC, Sørensen NN, Zahle F (2016) Fluid–structure interaction computations for geometrically resolved rotor simulations using CFD. Wind Energy 19(12):2205–2221

    Article  Google Scholar 

  • Herring R, Dyer K, Martin F, Ward C (2019) The increasing importance of leading edge erosion and a review of existing protection solutions. Renew Sust Energ Rev 115:109382. Elsevier

    Google Scholar 

  • IEC 61400-1 (2005) Wind turbines – Part 1: Design requirements. 3rd Edition, 2005-08 Reference Number IEC 61400-1:2005(E), International Electrotechnical Commission

    Google Scholar 

  • Jamieson P (2011) Innovation in wind turbine design. Wiley, Chichester, West Sussex; Hoboken, 1 edn, Sept 2011

    Google Scholar 

  • Jensen PH, Chaviaropoulos P, Natarajan A (2017) LCOE reduction for the next generation offshore wind turbines – outcomes from the INNWIND.EU project. Technical report, Oct 2017

    Google Scholar 

  • Johansen J, Sørensen NN (2007) Numerical analysis of winglets on wind turbine blades using CFD. In: European wind energy congress. Citeseer

    Google Scholar 

  • Khaled M, Ibrahim MM, Abdel Hamed HE, AbdelGwad AF (2019) Investigation of a small Horizontal-Axis wind turbine performance with and without winglet. Energy 187:115921. Elsevier

    Google Scholar 

  • Larwood S, van Dam CP, Schow D (2014) Design studies of swept wind turbine blades. Renew Energy 71:563–571

    Article  Google Scholar 

  • Mathew J, Singh A, Madsen J, Arce León C (2016) Serration design methodology for wind turbine noise reduction. J Phys Conf Ser 753:022019

    Article  Google Scholar 

  • McWilliam MK, Zahle F, Dicholkar A, Verelst D, Kim T (2018) Optimal aero-elastic design of a rotor with bend-twist coupling. Loughborough University

    Book  Google Scholar 

  • Mishnaevsky Jr L (2019) Toolbox for optimizing anti-erosion protective coatings of wind turbine blades: overview of mechanisms and technical solutions. Wind Energy 22(11):1636–1653. Wiley Online Library

    Google Scholar 

  • Oerlemans S, Fisher M, Maeder T, Kögler K (2009) Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA J 47(6):1470–1481. American Institute of Aeronautics and Astronautics _eprint: https://doi.org/10.2514/1.38888

  • Pavese C, Tibaldi C, Zahle F, Kim T (2017) Aeroelastic multidisciplinary design optimization of a swept wind turbine blade. Wind Energy 20(12):1941–1953

    Article  Google Scholar 

  • Peeters M, Santo G, Degroote J, Paepegem WV (2017) The concept of segmented wind turbine blades: a review. Energies 10(8):1112. Multidisciplinary Digital Publishing Institute

    Google Scholar 

  • Sartori L, Bortolotti P, Croce A, Bottasso CL (2016) Integration of prebend optimization in a holistic wind turbine design tool. J Phys Conf Ser 753:4. IOP Publishing

    Google Scholar 

  • Schaffarczyk AP, Boisard R, Boorsma K, Dose B, Lienard C, Lutz T, Madsen HA, Rahimi H, Reichstein T, Schepers G, Sørensen N, Stoevesandt B, Weihing P (2018) Comparison of 3D transitional CFD simulations for rotating wind turbine wings with measurements

    Google Scholar 

  • Schepers JG, Ceyhan O, Savenije FJ, Stettner M, Kooijman HJ, Chaviarapoulos P, Sieros G, Simao Ferreira C, Sørensen NN, Wächter M, Stoevesandt B, Lutz T, González A, Barakos G, Voutsinas S, Croce A, Madsen J (2015) AVATAR: advanced aerodynamic tools for large rotors. In: Proceedings of 33rd ASME wind energy symposium. www.eera-avatar.eu

  • Sessarego M, Feng J, Ramos-García N, Horcas SG (2020) Design optimization of a curved wind turbine blade using neural networks and an aero-elastic vortex method under turbulent inflow. Renew Energy 146:1524–1535

    Article  Google Scholar 

  • Sørensen NN (2009) CFD modelling of laminar-turbulent transition for airfoils and rotors using the γ − Reθ model. Wind Energy 12(8):715–733

    Google Scholar 

  • Stoevesandt B (2010) OpenFOAM:RANS-Simulation of a wind turbine and verification. In: Proceedings of EAWE conference ’The Science of Making Torque from the Wind’ held at Crete

    Google Scholar 

  • Tobin N, Hamed AM, Chamorro LP (2015) An experimental study on the effects ofwinglets on the wake and performance of a modelwind turbine. Energies 8(10):11955–11972. Multidisciplinary Digital Publishing Institute

    Google Scholar 

  • Xudong W, Shen WZ, Zhu WJ, Sørensen JN, Jin C (2009) Shape optimization of wind turbine blades. Wind Energy 12(8):781–803

    Article  Google Scholar 

  • Zahle F, Bak C, Sørensen NN, Vronsky T, Gaudern N (2014) Design of the LRP airfoil series using 2D CFD. J Phys Conf Ser (Online) 524(1)

    Google Scholar 

  • Zahle F, Tibaldi C, Verelst DR, Bak C, Bitsche R, Blasques JPAA (2015) Aero-elastic optimization of a 10 mw wind turbine. In: 33rd wind energy symposium. American Institute of Aeronautics and Astronautics

    Google Scholar 

  • Zhu B, Sun X, Wang Y, Huang D (2017) Performance characteristics of a horizontal axis turbine with fusion winglet. Energy 120:431–440. Elsevier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgos Sieros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sieros, G. (2022). Rotor Blade Design, Number of Blades, Performance Characteristics. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Sun, Y. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-31307-4_4

Download citation

Publish with us

Policies and ethics