Skip to main content

CFD for Wind Turbine Simulations

  • Reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics
  • 1945 Accesses

Abstract

The use of computational fluid dynamics (CFD) for three-dimensional wind turbine rotor simulations has become recently more and more popular in wind energy research. Also, in the industry, this tool has started to play a crucial role in the analysis of blade or rotor aerodynamics. In this chapter, the numerical methods to simulate blade or rotor performances are illustrated. In particular, an overview of the state of the art in terms of simulation setup, the corresponding grid requirements, and the proper turbulence models is provided. Moreover, a considerable number of verification and validation cases for both experimental and numerical reference wind turbine models are presented. Finally, the added value of the full rotor simulations as kernel for the development of reduced order methods for load simulations is illustrated by means of extensive literature sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CFL3D; see https://cfl3d.larc.nasa.gov/Cfl3dv6/V5Manual.tar, accessed on May 1, 2021.

  2. 2.

    FUN3D; see https://fun3d.larc.nasa.gov/papers/FUN3D_Manual-13.6.pdf, accessed on May 1, 2021.

  3. 3.

    https://turbmodels.larc.nasa.gov/spalart.html, accessed on May 1, 2021.

  4. 4.

    AVATAR project web home page.

References

  • Bangga G, Kim Y, Lutz T, Weihing P, Krämer E (2016) Investigations of the inflow turbulence effect on rotational augmentation by means of CFD. J Phys Conf Ser 753:022026

    Article  Google Scholar 

  • Bangga G, Lutz T, Jost E, Krämer E (2017) CFD studies on rotational augmentation at the inboard sections of a 10 mw wind turbine rotor. J Renew Sustain Energy 9(2):023304

    Article  Google Scholar 

  • Bangga G, Weihing P, Lutz T, Krämer E (2017) Effect of computational grid on accurate prediction of a wind turbine rotor using delayed detached-eddy simulations. J Mech Sci Technol 31(5):2359–2364

    Article  Google Scholar 

  • Bechmann A, Sørensen NN, Zahle F (2011) CFD simulations of the MEXICO rotor. Wind Energy 14(5):677–689

    Article  Google Scholar 

  • Carrión M, Steijl R, Woodgate M, Barakos G, Munduate X, Gomez-Iradi S (2015) Computational fluid dynamics analysis of the wake behind the mexico rotor in axial flow conditions. Wind Energy 18:1023–1045

    Article  Google Scholar 

  • Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng 130:078001–078001–4. https://doi.org/10.1115/1.2960953

  • Chao DD, van Dam CP (2007) Computational aerodynamic analysis of a blunt trailing-edge airfoil modification to the nrel phase vi rotor. Wind Energy 10(6):529–550

    Article  Google Scholar 

  • Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approac (1997)

    Google Scholar 

  • Coton FN, Wang T, Galbraith RAMD (2002) An examination of key aerodynamic modelling issues raised by the NREL blind comparison. Wind Energy 5:199–212

    Article  Google Scholar 

  • Davidson L (2019) Fluid mechanics turbulent flow and turbulence modeling (E-Book). Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology

    Google Scholar 

  • Davidson L, Peng SH (2003) Hybrid les-rans modelling. Int J Numer Methods Fluids 43:1003–1018

    Article  MATH  Google Scholar 

  • Drela M, Giles MB (1987) Viscous-inviscid analysis transonic reynolds number airfoils. AIAA J 25:1347–1355

    Article  MATH  Google Scholar 

  • Drofelnik J, Da Ronch A, Campobasso MS (2018) Harmonic balance navier-stokes aerodynamic analysis of horizontal axis wind turbines in yawed wind. Wind Energy 21(7): 515–530

    Article  Google Scholar 

  • Fedorov V, Berggreen C (2014) Bend-twist coupling potential of wind turbine blades. J Phys Conf Ser 524:012035

    Article  Google Scholar 

  • Fröhlich J, Rodi W (2002) Introduction to large eddy simulation of turbulent flows. In: Launder BE, Sandham ND (eds) Closure strategies for turbulent and transitional flows, pp 267–299. Cambridge University Press

    Google Scholar 

  • Abu-Ghannam BJ, Shaw R (1980) Natural transition of boundary layers—the effects of turbulence, pressure gradient, and flow history. J Mech Eng Sci 22:213–228

    Article  Google Scholar 

  • Ghasemian M, Nejat A (2015) Aerodynamic noise prediction of a horizontal axis wind turbine using improved delayed detached eddy simulation and acoustic analogy. Energy Convers Manag 99:210–220

    Article  Google Scholar 

  • Gomez-Iradi S, Munduate X (2014) Zig-zag tape influence in NREL phase vi wind turbine. J Phys Conf Ser 524:012096

    Article  Google Scholar 

  • Haase W, Braza M, Revell A (2009) DESider, volume 103 of Notes on numerical fluid mechanics and multidisciplinary design, 1612-2909. Springer

    Google Scholar 

  • Hansen MOL, Sørensen JN, Voutsinas S, Sørensen NN, Madsen HA (2006) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42(4):285–330

    Article  Google Scholar 

  • Heinz JC, Sørensen NN, Zahle F (2016) Fluid-structure interaction computations for geometrically resolved rotor simulations using CFD. Wind Energy 19(12):2205–2221

    Article  Google Scholar 

  • Herráez I, Daniele E, Gerard Schepers J (2018) extraction of the wake induction and angle of attack on rotating wind turbine blades from PIV and CFD results. Wind Energy Sci 3:1–9

    Article  Google Scholar 

  • van Ingen J (2008) The eN method for transition prediction. Historical review of work at TU Delft, chapter 1, pp 1–49. AIAA

    Google Scholar 

  • Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-mw reference wind turbine for offshore system development

    Google Scholar 

  • Jost E, Klein L, Leipprand H, Lutz T, Krämer E (2018) Extracting the angle of attack on rotor blades from CFD simulations. Wind Energy 9:499

    Google Scholar 

  • Kooijman HJT, Lindenburg C, Winkelaar D, van der Hooft EL (2003) Dowec 6 mw pre-design

    Google Scholar 

  • Länger-Möller A, Löwe J, Kessler R (2017) Investigation of the NREL phase vi experiment with the incompressible CFD solver theta. Wind Energy 20(9):1529–1549

    Article  Google Scholar 

  • Langtry RB (2006) A correlation-based transition model using local variables for unstructured parallelized CFD codes

    Google Scholar 

  • Lanzafame R, Mauro S, Messina M (2013) Wind turbine cfd modeling using a correlation-based transitional model. Renew Energy 52:31–39

    Article  Google Scholar 

  • Leonard A (1974) Energy cascade in large-eddy simulations of turbulent fluid flows. In: Frankiel FN, Munn RE (eds) Advances in geophysics, volume 18 of Advances in geophysics, pp 237–248. Academic Press

    Google Scholar 

  • Le Pape A, Lecanu J (2004) 3d navier-stokes computations of a stall-regulated wind turbine. Wind Energy 7:309–324

    Article  Google Scholar 

  • Li Y, Paik K-J, Xing T, Carrica PM (2012) Dynamic overset cfd simulations of wind turbine aerodynamics. Renew Energy 37:285–298

    Article  Google Scholar 

  • Lutz T (2011) Near wake studies of the MEXICO rotor. In: EWEA Annual Event, Brussels, Belgium, Mar (2011) EWEA Annual Event

    Google Scholar 

  • Lynch CE, Smith MJ (2013) Unstructured overset incompressible computational fluid dynamics for unsteady wind turbine simulations. Wind Energy 16:1033–1048

    Article  Google Scholar 

  • Madsen HA (2002) Forskning i aeroelasticitet EFP-2001. Contract ENS-1363/00-0001 Forskningscenter Rise, Roskilde (2002)

    Google Scholar 

  • Madsen HA (2010) The DAN-AERO MW experiments, volume 1726 of Risø R, Report. Risø National Laboratory

    Google Scholar 

  • Madsen MHA, Zahle F, Sørensen NN, Martins JRRA (2019) Multipoint high-fidelity cfd-based aerodynamic shape optimization of a 10 mw wind turbine. Wind Energy Sci 4(2): 163–192

    Article  Google Scholar 

  • Mann J (1994) The spatial structure of neutral atmospheric surface-layer turbulence. J Fluid Mech 273:141–168

    Article  MATH  Google Scholar 

  • Mellen CP, Fröhlich J, Rodi W (2003) Lessons from lesfoil project on large-eddy simulation of flow around an airfoil. AIAA J 41:573–581

    Article  Google Scholar 

  • Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  • Menter FR, Langtry RB, Likki SR, Suzen YB, Huang PG, Völker S (2006) A correlation-based transition model using local variables—part I. J Turbomach 128:413

    Article  Google Scholar 

  • Mockett C (2009) A comprehensive study of detached eddy simulation. Ph.D., Fakultt V – Verkehrs- und Maschinensysteme, Mockett, Charles (VerfasserIn)

    Google Scholar 

  • Nielsen EJ, Anderson WK (2002) Recent improvements in aerodynamic design optimization on unstructured meshes. AIAA J 40(6):1155–1163

    Article  Google Scholar 

  • Piomelli U, Yu Y, Adrian RJ (1996) Subgrid–scale energy transfer and near–wall turbulence structure. Phys Fluids 8:215–224

    Article  MATH  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press

    Book  MATH  Google Scholar 

  • Rahimi H, Dose B, Herraez I, Peinke J, Stoevesandt B (2016) Chapter 1, DDES and URANS comparison of the NREL phase-VI wind turbine at deep stall. pp 1–16. AIAA

    Google Scholar 

  • Rahimi H, Martinez Garcia A, Stoevesandt B, Peinke J, Schepers G (2018) An engineering model for wind turbines under yawed conditions derived from high fidelity models. Wind Energy 5:85

    Google Scholar 

  • Rahimi H, Schepers JG, Shen WZ, Ramos García N, Schneider MS, Micallef D, Simao C, Ferreira J, Jost E, Klein L, Herráez I (2018) Evaluation of different methods for determining the angle of attack on wind turbine blades with cfd results under axial inflow conditions. Renew Energy 125:866–876

    Article  Google Scholar 

  • Ramos-García N, Sørensen JN, Shen WZ (2014) Simulations of the yawed mexico rotor using a viscous-inviscid panel method. J Phys Conf Ser 524:012026

    Article  Google Scholar 

  • Rethoré P-E, Sørensen NN, Zahle F, Bechmann A, Madsen HA (2011) CFD model of the MEXICO wind tunnel. In: EWEA Annual Event, Brussels, Belgium, Mar (2011) EWEA Annual Event

    Google Scholar 

  • Réthoré P-E, Sørensen N, Zahle F, Bechmann A, Madsen H (2011) Chapter 1, MEXICO wind tunnel and wind turbine modelled in CFD, pp 1–10. AIAA

    Google Scholar 

  • Sant T, van Kuik G, van Bussel GJW (2006) Estimating the angle of attack from blade pressure measurements on the nrel phase vi rotor using a free wake vortex model: Axial conditions. Wind Energy 9(6):549–577

    Article  Google Scholar 

  • Sant T, van Kuik G, van Bussel GJW (2009) Estimating the angle of attack from blade pressure measurements on the national renewable energy laboratory phase vi rotor using a free wake vortex model. Wind Energy 12:1–32

    Article  Google Scholar 

  • Schaffarczyk AP, Boisard R, Boorsma K, Dose B, Lienard C, Lutz T, Madsen HÅ, Rahimi H, Reichstein T, Schepers G, Sørensen N, Stoevesandt B, Weihing P (2018) Comparison of 3D transitional cfd simulations for rotating wind turbine wings with measurements. J Phys Conf Ser 1037:022012

    Article  Google Scholar 

  • Schepers JG, Boorsma K, Gomez-Iradi S, Schaffarczyk P, Madsen HA, Sørensen NN, Shen WZ, Lutz T, Schulz C, Herraez I, Schreck S (2014) Final report of iea wind task 29: Mexnext (phase 2). Technical Report ECN-E–14-060, ECN

    Google Scholar 

  • Shen WZ, Zhu WJ, Sørensen JN (2012) Actuator line/navier-stokes computations for the mexico rotor. Wind Energy 15:811–825

    Article  Google Scholar 

  • Shen WZ, Zhu WJ, Sørensen JN (2014) Study of tip loss corrections using CFD rotor computations. J Phys Conf Ser 555:012094

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  • Snel H (1998) Review of the present status of rotor aerodynamics. Wind Energy 1:46–69

    Article  Google Scholar 

  • Snel H (2003) Review of aerodynamics for wind turbines. Wind Energy 6:203–211

    Article  Google Scholar 

  • Sørensen NN (2009) CFD modelling of laminar-turbulent transition for airfoils and rotors using the γ – model. Wind Energy

    Book  Google Scholar 

  • Sørensen NN, Schreck S (2014) Transitional DDES computations of the NREL phase-vi rotor in axial flow conditions. J Phys Conf Ser 555:012096

    Article  Google Scholar 

  • Sørensen NN, Michelsen JA, Schreck S (2002) Navier-stokes predictions of the NREL phase vi rotor in the nasa ames 80 ft × 120 ft wind tunnel. Wind Energy 5(2–3):151–169

    Article  Google Scholar 

  • Sørensen NN, Bechmann A, Réthoré P-E, Zahle F (2014) Near wake reynolds-averaged navier-stokes predictions of the wake behind the mexico rotor in axial and yawed flow conditions. Wind Energy 17:75–86

    Article  Google Scholar 

  • Sørensen NN, Zahle F, Boorsma K, Schepers G (2016) CFD computations of the second round of mexico rotor measurements. J Phys Conf Ser 753:022054

    Article  Google Scholar 

  • Sørensen NN, Ramos-García N, Voutsinas SG, Jost E, Lutz T (2017) Aerodynamics of Large Rotors WP2 Deliverable 2.6 – AVATAR project

    Google Scholar 

  • Spalart PR (2001) Young-person’s guide to detached-eddy-simulation grids

    Google Scholar 

  • Spalart PR, Allmaras SR (1994) A one-equation turbulencemodel for aerodynamic flows. La Rech Aérospatiale 1:5–21

    Google Scholar 

  • Spalart PR, Rumsey CL (2007) Effective inflow conditions for turbulence models in aerodynamic calculations, 01.01.(2007)

    Google Scholar 

  • Spalart PR, Deck S, Shur ML, Squires KD, Strelets MK, Travin A (2006) A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor Comput Fluid Dyn 20:181–195

    Article  MATH  Google Scholar 

  • Stock HW, Haase W (1999) Feasibility study of e transition prediction in navier-stokes methods for airfoils. AIAA J 37:1187–1196

    Article  Google Scholar 

  • Sugoi G-I, Xavier M (2011) A CFD investigation of the influence of trip-tape on the MEXICO wind turbine blade sections. In: The science of making torque from the wind

    Google Scholar 

  • Thé J, Yu H (2017) A critical review on the simulations of wind turbine aerodynamics focusing on hybrid rans-les methods. Energy 138:257–289

    Article  Google Scholar 

  • Timmer WA, Rooij RPJOM (2003) Summary of the delft university wind turbine dedicated airfoils. In: 41st aerospace sciences meeting and exhibit, aerospace sciences meetings. American Institute of Aeronautics and Astronautics

    Google Scholar 

  • Travin A, Shur M, Strelets M, Spalart P (2000) Detached-eddy simulations past a circular cylinder. Flow Turbul Combust 63:293–313

    Article  MATH  Google Scholar 

  • Troldborg N, Bak C, Aagaard Madsen H, Skrzypinski WR (2013) Danaero mw: Final report

    Google Scholar 

  • Troldborg N, Zahle F, Réthoré P-E, Sørensen NN (2015) Comparison of wind turbine wake properties in non-sheared inflow predicted by different computational fluid dynamics rotor models. Wind Energy 18:1239–1250

    Article  Google Scholar 

  • Troldborg N, Zahle F, Sørensen NN (2016) Simulations of wind turbine rotor with vortex generators. J Phys Conf Ser 753:022057

    Article  Google Scholar 

  • Wang L, Diskin B, Biedron RT, Nielsen EJ, Bauchau OA (2020) Evaluation of high-fidelity multidisciplinary sensitivity-analysis framework for multipoint rotorcraft optimization. J Aircr 1–13

    Google Scholar 

  • Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26:1299–1310

    Article  MathSciNet  MATH  Google Scholar 

  • Wu C-HK, Nguyen V-T (2017) Aerodynamic simulations of offshore floating wind turbine in platform-induced pitching motion. Wind Energy 20:835–858

    Article  Google Scholar 

  • Zahle F, Sørensen NN, Johansen J (2009) Wind turbine rotor-tower interaction using an incompressible overset grid method. Wind Energy 12:594–619

    Article  Google Scholar 

  • Zahle F, Bak C, Sørensen NN, Guntur S, Troldborg N (2014) Comprehensive aerodynamic analysis of a 10 mw wind turbine rotor using 3D CFD. In: 32nd ASME wind energy symposium, Reston, Virginia, (2014) American Institute of Aeronautics and Astronautics

    Google Scholar 

  • Zhang Y, Gillebaart T, van Zuijlen A, van Bussel G, Bijl H (2017) Experimental and numerical investigations of aerodynamic loads and 3D flow over non-rotating mexico blades. Wind Energy 20:585–600

    Article  Google Scholar 

  • Zhou N, Chen J, Adams DE, Fleeter S (2016) Influence of inflow conditions on turbine loading and wake structures predicted by large eddy simulations using exact geometry. Wind Energy 19:803–824

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elia Daniele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Daniele, E. (2022). CFD for Wind Turbine Simulations. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Sun, Y. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-31307-4_21

Download citation

Publish with us

Policies and ethics