Skip to main content

Pseudomonas aeruginosa Infections in Transplant: Epidemiology and Emerging Treatment Options

  • Reference work entry
  • First Online:
Emerging Transplant Infections

Abstract

As one of the most formidable bacterial pathogens encountered in clinical practice, infections related to Pseudomonas aeruginosa (PsA) present a number of challenges to the infectious disease physician. In immunocompromised hosts in particular, PsA has the potential to manifest with unique, recurrent, and often severe clinical syndromes that warrant infectious disease consultation. A staggering array of virulence factors combined with a host of intrinsic and acquired genetic elements conferring resistance to antimicrobials can make this pathogen exceptionally difficult to manage. As the epidemiology of PsA infection in transplant patients has evolved over the past several decades, so too has this organism’s spectrum of antimicrobial resistance. The emergence of multidrug resistant (MDR) and extensively drug resistant (XDR) isolates in recent years underscores the importance of emerging therapeutics in the treatment of complicated infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37:1288–301.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lodise TP, Wang R, Bhagnani T, Zhao Q, Ye M, Berger A. Clinical and economic burden of multi-drug resistant Pseudomonas sp. (MDRP) among patients with serious infections in United States hospitals. Open Forum Infect Dis. 2017. https://doi.org/10.1093/ofid/ofw172.1593.

  3. Hamandi B, Husain S, Grootendorst P, Papadimitropoulos EA. Clinical and microbiological epidemiology of early and late infectious complications among solid-organ transplant recipients requiring hospitalization. Transpl Int. 2016;29:1029–38.

    Article  PubMed  Google Scholar 

  4. Luo A, Zhong Z, Wan Q, Ye Q. The distribution and resistance of pathogens among solid organ transplant recipients with Pseudomonas aeruginosa infections. Med Sci Monit. 2016;22:1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Su H, Ye Q, Wan Q, Zhou J. Predictors of mortality in abdominal organ transplant recipients with Pseudomonas aeruginosa infections. Ann Transplant. 2016;21:86–93.

    Article  CAS  PubMed  Google Scholar 

  6. Shendi AM, Wallis G, Painter H, Harber M, Collier S. Epidemiology and impact of bloodstream infections among kidney transplant recipients: a retrospective single-center experience. Transpl Infect Dis. 2018;20:e12815.

    Article  CAS  Google Scholar 

  7. Bodro M, Sabé N, Tubau F, Lladó L, Baliellas C, González-Costello J, Cruzado JM, Carratalà J. Extensively drug-resistant Pseudomonas aeruginosa bacteremia in solid organ transplant recipients. Transplantation. 2015;99:616–22.

    Article  CAS  PubMed  Google Scholar 

  8. Camargo LFA, Marra AR, Pignatari ACC, et al. Nosocomial bloodstream infections in a nationwide study: comparison between solid organ transplant patients and the general population. Transpl Infect Dis. 2015;17:308–13.

    Article  CAS  PubMed  Google Scholar 

  9. Magiorakos A-P, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson LE, D’Agata EMC, Paterson DL, Clarke L, Qureshi ZA, Potoski BA, Peleg AY. Pseudomonas aeruginosa bacteremia over a 10-year period: multidrug resistance and outcomes in transplant recipients. Transpl Infect Dis. 2009. https://doi.org/10.1111/j.1399-3062.2009.00380.x.

  11. Tebano G, Geneve C, Tanaka S, Grall N, Atchade E, Augustin P, Thabut G, Castier Y, Montravers P, Desmard M. Epidemiology and risk factors of multidrug-resistant bacteria in respiratory samples after lung transplantation. Transpl Infect Dis. 2016;18:22–30.

    Article  CAS  PubMed  Google Scholar 

  12. Liu T, Zhang Y, Wan Q. Pseudomonas aeruginosa bacteremia among liver transplant recipients. Infect Drug Resist. 2018;11:2345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vidal E, Torre-Cisneros J, Blanes M, et al. Bacterial urinary tract infection after solid organ transplantation in the RESITRA cohort. Transpl Infect Dis. 2012;14:595–603.

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto M, Sugawara Y, Tamura S, Kaneko J, Matsui Y, Kokudo N, Makuuchi M. Pseudomonas aeruginosa infection after living-donor liver transplantation in adults. Transpl Infect Dis. 2009;11:11–9.

    Article  CAS  PubMed  Google Scholar 

  15. Fishman JA. Infection in solid-organ transplant recipients. N Engl J Med. 2007;357:2601–14.

    Article  CAS  PubMed  Google Scholar 

  16. Moreno A, Cervera C, Gavaldá J, et al. Bloodstream infections among transplant recipients: results of a nationwide surveillance in Spain. Am J Transplant. 2007;7:2579–86.

    Article  CAS  PubMed  Google Scholar 

  17. Cervera C, Fernández-Ruiz M, Valledor A, et al. Epidemiology and risk factors for late infection in solid organ transplant recipients. Transpl Infect Dis. 2011;13:598–607.

    Article  CAS  PubMed  Google Scholar 

  18. Orlando G, Di Cocco P, Gravante G, D’Angelo M, Famulari A, Pisani F. Fatal hemorrhage in two renal graft recipients with multi-drug resistant Pseudomonas aeruginosa infection: case report. Transpl Infect Dis. 2009. https://doi.org/10.1111/j.1399-3062.2009.00412.x.

  19. Lewis JD, Sifri CD. Multidrug-resistant bacterial donor-derived infections in solid organ transplantation. Curr Infect Dis Rep. 2016;18:18.

    Article  PubMed  Google Scholar 

  20. Sifri CD, Ison MG. Highly resistant bacteria and donor-derived infections: treading in uncharted territory. Transpl Infect Dis. 2012;14:223–8.

    Article  CAS  PubMed  Google Scholar 

  21. Bonvillain RW, Valentine VG, Lombard G, LaPlace S, Dhillon G, Wang G. Post-operative infections in cystic fibrosis and non-cystic fibrosis patients after lung transplantation. J Heart Lung Transplant. 2007;26:890–7.

    Article  PubMed  Google Scholar 

  22. Botha P, Archer L, Anderson RL, Lordan J, Dark JH, Corris PA, Gould K, Fisher AJ. Pseudomonas aeruginosa colonization of the allograft after lung transplantation and the risk of bronchiolitis obliterans syndrome. Transplantation. 2008;85:771–4.

    Article  PubMed  Google Scholar 

  23. Gregson AL, Wang X, Weigt SS, et al. Interaction between Pseudomonas and CXC chemokines increases risk of bronchiolitis obliterans syndrome and death in lung transplantation. Am J Respir Crit Care Med. 2013;187:518–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dorschner P, McElroy LM, Ison MG. Nosocomial infections within the first month of solid organ transplantation. Transpl Infect Dis. 2014;16:171–87.

    Article  CAS  PubMed  Google Scholar 

  25. Yuan X, Liu T, Wu D, Wan Q. Epidemiology, susceptibility, and risk factors for acquisition of MDR/XDR gram-negative bacteria among kidney transplant recipients with urinary tract infections. Infect Drug Resist. 2018;11:707–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seehofer D, Eurich D, Veltzke-Schlieker W, Neuhaus P. Biliary complications after liver transplantation: old problems and new challenges. Am J Transplant. 2013;13:253–65.

    Article  CAS  PubMed  Google Scholar 

  27. Fejfarová V, Jirkovská A, Petkov V, Bouček P, Skibová J. Comparison of microbial findings and resistance to antibiotics between transplant patients, patients on hemodialysis, and other patients with the diabetic foot. J Diabetes Complicat. 2004. https://doi.org/10.1016/S1056-8727(02)00276-3.

  28. Wallen TJ, Habertheuer A, Gottret JP, et al. Sternal wound complications in patients undergoing orthotopic heart transplantation. J Card Surg. 2019;34:186–9.

    Article  PubMed  Google Scholar 

  29. Abad CLR, Lahr BD, Razonable RR. Epidemiology and risk factors for infection after living donor liver transplantation. Liver Transplant. 2017;23:465–77.

    Article  Google Scholar 

  30. Alamo JM, Gómez MA, Tamayo MJ, Socas M, Valera Z, Robles JA, Pareja F, García I, Serrano J, Bernardos A. Mycotic pseudoaneurysms after liver transplantation. Transplant Proc. 2005;37:1512–4.

    Article  CAS  PubMed  Google Scholar 

  31. Kumar D, Cattral MS, Robicsek A, Gaudreau C, Humar A. Outbreak of Pseudomonas aeruginosa by multiple organ transplantation from a common donor. Transplantation. 2003;75:1053–5.

    Article  PubMed  Google Scholar 

  32. Duarte AG, Myers AC. Cough reflex in lung transplant recipients. Lung. 2012;190:23–7.

    Article  PubMed  Google Scholar 

  33. Guzman MB, Vader J, Olsen M, Dubberke ER. Epidemiology and microbiology of first ventricular assist device infection and their effect on outcomes. Open Forum Infect Dis. 2017;4:S652–3.

    Article  PubMed Central  Google Scholar 

  34. Ramos J-L, Goldberg JB, Filloux A, editors. Pseudomonas; 2015. https://doi.org/10.1007/978-94-017-9555-5.

    Book  Google Scholar 

  35. Chang HY, Rodriguez V, Narboni G, Bodey GP, Luna MA, Freireich EJ. Causes of death in adults with acute leukemia. Medicine (Baltimore). 1976;55:259–68.

    Article  CAS  Google Scholar 

  36. Andrews T, Sullivan KE. Infections in patients with inherited defects in phagocytic function. Clin Microbiol Rev. 2003;16:597–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hamilton JR, Overall JC. Synergistic infection with murine cytomegalovirus and Pseudomonas aeruginosa in mice. J Infect Dis. 1978;137:775–82.

    Article  CAS  PubMed  Google Scholar 

  38. Falagas ME, Snydman DR, Griffith J, Werner BG. Exposure to cytomegalovirus from the donated organ is a risk factor for bacteremia in orthotopic liver transplant recipients. Clin Infect Dis. 1996. https://doi.org/10.1093/clinids/23.3.468.

  39. Kalil AC, Levitsky J, Lyden E, Stoner J, Freifeld AG. Meta-analysis: the efficacy of strategies to prevent organ disease by cytomegalovirus in solid organ transplant recipients. Ann Intern Med. 2005;143:870–80.

    Article  PubMed  Google Scholar 

  40. Kotton CN, Kumar D, Caliendo AM, Huprikar S, Chou S, Danziger-Isakov L, Humar A, The Transplantation Society International CMV Consensus Group. The third international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation. 2018;102:900–31.

    Article  PubMed  Google Scholar 

  41. Hakki M, Limaye AP, Kim HW, Kirby KA, Corey L, Boeckh M. Invasive Pseudomonas aeruginosa infections: high rate of recurrence and mortality after hematopoietic cell transplantation. Bone Marrow Transplant. 2007;39:687–93.

    Article  CAS  PubMed  Google Scholar 

  42. Satlin MJ, Walsh TJ. Multidrug-resistant Enterobacteriaceae, Pseudomonas aeruginosa, and vancomycin-resistant Enterococcus: three major threats to hematopoietic stem cell transplant recipients. Transpl Infect Dis. 2017;19:e12762.

    Article  CAS  Google Scholar 

  43. Mikulska M, Del Bono V, Raiola AM, Bruno B, Gualandi F, Occhini D, di Grazia C, Frassoni F, Bacigalupo A, Viscoli C. Blood stream infections in allogeneic hematopoietic stem cell transplant recipients: reemergence of gram-negative rods and increasing antibiotic resistance. Biol Blood Marrow Transplant. 2009;15:47–53.

    Article  CAS  PubMed  Google Scholar 

  44. Macesic N, Morrissey CO, Cheng AC, Spencer A, Peleg AY. Changing microbial epidemiology in hematopoietic stem cell transplant recipients: increasing resistance over a 9-year period. Transpl Infect Dis. 2014. https://doi.org/10.1111/tid.12298.

  45. Patriarca F, Cigana C, Massimo D, et al. Risk factors and outcomes of infections by multidrug-resistant gram-negative bacteria in patients undergoing hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2017;23:333–9.

    Article  PubMed  Google Scholar 

  46. Chaves L, Tomich LM, Salomão M, et al. High mortality of bloodstream infection outbreak caused by carbapenem-resistant P. aeruginosa producing SPM-1 in a bone marrow transplant unit. J Med Microbiol. 2017;66:1722–9.

    Article  CAS  PubMed  Google Scholar 

  47. Walters MS, Grass JE, Bulens SN, et al. Carbapenem-resistant Pseudomonas aeruginosa at US emerging infections program sites, 2015. Emerg Infect Dis. 2019;25:1281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yan C-H, Wang Y, Mo X-D, et al. Incidence, risk factors, microbiology and outcomes of pre-engraftment bloodstream infection after haploidentical hematopoietic stem cell transplantation and comparison with HLA-identical sibling transplantation. Clin Infect Dis. 2018;67:S162–73.

    Article  CAS  PubMed  Google Scholar 

  49. Hakki M, Humphries RM, Hemarajata P, Tallman GB, Shields RK, Mettus RT, Doi Y, Lewis JS. Fluoroquinolone prophylaxis selects for meropenem non-susceptible Pseudomonas aeruginosa in patients with hematologic malignancies and hematopoietic-cell transplant recipients. Clin Infect Dis. 2018. https://doi.org/10.1093/cid/ciy825.

  50. D’Agata E. Pseudomonas aeruginosa and other Pseudomonas species. In: Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 2015. p. 2518–31.e3. Elsevier out of Philadelphia, PA.

    Google Scholar 

  51. Cheng MP, Kanjilal S, Paquette K, Issa N, Hammond S, Ho VT, Marty FM. 90-day risk of bloodstream infections with enteric pathogens (BSI-EP) in patients with gastrointestinal graft-versus-host disease (GI-GVHD). Biol Blood Marrow Transplant. 2018;24:S375.

    Article  Google Scholar 

  52. Czyzewski K, Styczynski J, Giebel S, et al. Age-dependent determinants of infectious complications profile in children and adults after hematopoietic cell transplantation: lesson from the nationwide study. Ann Hematol. 2019;98:2197–2211.

    Google Scholar 

  53. Chan ST, Logan AC. The clinical impact of cytomegalovirus infection following allogeneic hematopoietic cell transplantation: why the quest for meaningful prophylaxis still matters. Blood Rev. 2017;31:173–83.

    Article  PubMed  Google Scholar 

  54. Qu Y, McGiffin DC, Kure CE, Ozcelik B, Thissen H, Fraser JF, Peleg AY. Microbial biofilm formation and migration on ventricular assist device drivelines: implications for infection. J Heart Lung Transplant. 2018;37:S134.

    Article  Google Scholar 

  55. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2015;6:26–41.

    Article  CAS  PubMed  Google Scholar 

  56. Sifri CD. Healthcare epidemiology: quorum sensing: bacteria talk sense. Clin Infect Dis. 2008;47:1070–6.

    Article  CAS  PubMed  Google Scholar 

  57. Decker BK, Palmore TN. The role of water in healthcare-associated infections. Curr Opin Infect Dis. 2013;26:345–51.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kizny Gordon AE, Mathers AJ, Cheong EYL, Gottlieb T, Kotay S, Walker AS, Peto TEA, Crook DW, Stoesser N. The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections – a systematic review of the literature. Clin Infect Dis. 2017;64:1435–44.

    Article  PubMed  Google Scholar 

  59. Sehulster L, Chinn RYW, CDC, HICPAC. Guidelines for environmental infection control in health-care facilities. Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm Rep. 2003;52:1–42.

    PubMed  Google Scholar 

  60. Suleyman G, Alangaden G, Bardossy AC. The role of environmental contamination in the transmission of nosocomial pathogens and healthcare-associated infections. Curr Infect Dis Rep. 2018;20:12.

    Article  PubMed  Google Scholar 

  61. Mathers AJ, Vegesana K, German Mesner I, et al. Intensive care unit wastewater interventions to prevent transmission of multispecies Klebsiella pneumoniae carbapenemase–producing organisms. Clin Infect Dis. 2018;67:171–8.

    Article  PubMed  Google Scholar 

  62. Fusch C, Pogorzelski D, Main C, Meyer C-L, el Helou S, Mertz D. Self-disinfecting sink drains reduce the Pseudomonas aeruginosa bioburden in a neonatal intensive care unit. Acta Paediatr. 2015;104:e344–9.

    Article  PubMed  Google Scholar 

  63. Kossow A, Kampmeier S, Willems S, et al. Control of multidrug-resistant Pseudomonas aeruginosa in allogeneic hematopoietic stem cell transplant recipients by a novel bundle including remodeling of sanitary and water supply systems. Clin Infect Dis. 2017;65:935–42.

    Article  PubMed  Google Scholar 

  64. Egli A, Osthoff M, Goldenberger D, Halter J, Schaub S, Steiger J, Weisser M, Frei R. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) directly from positive blood culture flasks allows rapid identification of bloodstream infections in immunosuppressed hosts. Transpl Infect Dis. 2015;17:481–7.

    Article  CAS  PubMed  Google Scholar 

  65. Khennouchi NC e H, Loucif L, Boutefnouchet N, Allag H, Rolain J-M. MALDI-TOF MS as a tool to detect a nosocomial outbreak of extended-spectrum-β-lactamase- and armA methyltransferase-producing Enterobacter cloacae clinical isolates in Algeria. Antimicrob Agents Chemother. 2015;59:6477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hill JT, Tran K-DT, Barton KL, Labreche MJ, Sharp SE. Evaluation of the nanosphere verigene BC-GN assay for direct identification of gram-negative bacilli and antibiotic resistance markers from positive blood cultures and potential impact for more-rapid antibiotic interventions. J Clin Microbiol. 2014;52:3805–7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Thalavitiya Acharige MJ, Koshy SS, Koo S. The use of microbial metabolites for the diagnosis of infectious diseases. In: Advanced techniques in diagnostic microbiology. Cham: Springer International Publishing; 2018. p. 261–72.

    Chapter  Google Scholar 

  68. Hauser PM, Bernard T, Greub G, Jaton K, Pagni M, Hafen GM. Microbiota present in cystic fibrosis lungs as revealed by whole genome sequencing. PLoS One. 2014;9:e90934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. López-Causapé C, Cabot G, del Barrio-Tofiño E, Oliver A. The versatile mutational resistome of Pseudomonas aeruginosa. Front Microbiol. 2018;9:685.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vanegas JM, Cienfuegos AV, Ocampo AM, et al. Similar frequencies of Pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellin, Colombia. J Clin Microbiol. 2014;52:3978–86.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gupta V. Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species. Expert Opin Investig Drugs. 2008;17:131–43.

    Article  CAS  PubMed  Google Scholar 

  72. Dortet L, Poirel L, Nordmann P. Rapid detection of carbapenemase-producing Pseudomonas spp. J Clin Microbiol. 2012;50:3773–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jacoby GA. AmpC Β-lactamases. Clin Microbiol Rev. 2009;22:161–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kong K-F, Aguila A, Schneper L, Mathee K. Pseudomonas aeruginosa β-lactamase induction requires two permeases, AmpG and AmpP. BMC Microbiol. 2010;10:328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006;50:1633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015;45:568–85.

    Article  CAS  PubMed  Google Scholar 

  77. Cabot G, Bruchmann S, Mulet X, Zamorano L, Moyà B, Juan C, Haussler S, Oliver A. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother. 2014;58:3091–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fraile-Ribot PA, Cabot G, Mulet X, Periañez L, Martín-Pena ML, Juan C, Pérez JL, Oliver A. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2018;73:658–63.

    Article  CAS  PubMed  Google Scholar 

  79. Haidar G, Philips NJ, Shields RK, et al. Ceftolozane-tazobactam for the treatment of multidrug-resistant Pseudomonas aeruginosa infections: clinical effectiveness and evolution of resistance. Clin Infect Dis. 2017;65:110–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Winkler ML, Papp-Wallace KM, Hujer AM, Domitrovic TN, Hujer KM, Hurless KN, Tuohy M, Hall G, Bonomo RA. Unexpected challenges in treating multidrug-resistant gram-negative bacteria: resistance to ceftazidime-avibactam in archived isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2015;59:1020–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Chalhoub H, Sáenz Y, Nichols WW, Tulkens PM, Van Bambeke F. Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis. Int J Antimicrob Agents. 2018;52:697–701.

    Article  CAS  PubMed  Google Scholar 

  82. Sanz-García F, Hernando-Amado S, Martínez JL. Mutation-driven evolution of Pseudomonas aeruginosa in the presence of either ceftazidime or ceftazidime-avibactam. Antimicrob Agents Chemother. 2018. https://doi.org/10.1128/AAC.01379-18.

  83. Humphries RM, Yang S, Hemarajata P, Ward KW, Hindler JA, Miller SA, Gregson A. First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2015;59:6605–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goli HR, Nahaei MR, Rezaee MA, Hasani A, Samadi Kafil H, Aghazadeh M, Sheikhalizadeh V. Contribution of mexAB-oprM and mexXY (-oprA) efflux operons in antibiotic resistance of clinical Pseudomonas aeruginosa isolates in Tabriz, Iran. Infect Genet Evol. 2016;45:75–82.

    Article  CAS  PubMed  Google Scholar 

  85. Dößelmann B, Willmann M, Steglich M, Bunk B, Nübel U, Peter S, Neher RA. Rapid and consistent evolution of colistin resistance in extensively drug-resistant Pseudomonas aeruginosa during morbidostat culture. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/AAC.00043-17.

  86. Jochumsen N, Marvig RL, Damkiær S, Jensen RL, Paulander W, Molin S, Jelsbak L, Folkesson A. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions. Nat Commun. 2016;7:13002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Phan M-D, Nhu NTK, Achard MES, et al. Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli. J Antimicrob Chemother. 2017;72:2729–36.

    Article  CAS  PubMed  Google Scholar 

  88. Liu Y-Y, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.

    Article  PubMed  CAS  Google Scholar 

  89. Walkty A, Adam H, Baxter M, Denisuik A, Lagace-Wiens P, Karlowsky JA, Hoban DJ, Zhanel GG. In vitro activity of plazomicin against 5,015 gram-negative and gram-positive clinical isolates obtained from patients in Canadian hospitals as part of the CANWARD study, 2011–2012. Antimicrob Agents Chemother. 2014;58:2554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37:177– 92.

    Article  CAS  PubMed  Google Scholar 

  91. De Groote VN, Fauvart M, Kint CI, Verstraeten N, Jans A, Cornelis P, Michiels J. Pseudomonas aeruginosa fosfomycin resistance mechanisms affect non-inherited fluoroquinolone tolerance. J Med Microbiol. 2011;60:329–36.

    Article  PubMed  CAS  Google Scholar 

  92. Lodise TP, Patel N, Kwa A, Graves J, Furuno JP, Graffunder E, Lomaestro B, McGregor JC. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother. 2007;51:3510–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sawyer RG, Claridge JA, Nathens AB, et al. Trial of short-course antimicrobial therapy for intraabdominal infection. N Engl J Med. 2015;372:1996–2005.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yahav D, Franceschini E, Koppel F, et al. Seven versus 14 days of antibiotic therapy for uncomplicated gram-negative bacteremia: a noninferiority randomized controlled trial. Clin Infect Dis. 2018. https://doi.org/10.1093/cid/ciy1054.

  95. Grupper M, Kuti JL, Nicolau DP. Continuous and prolonged intravenous β-lactam dosing: implications for the clinical laboratory. Clin Microbiol Rev. 2016;29:759–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lal A, Jaoude P, El-Solh AA. Prolonged versus intermittent infusion of β-lactams for the treatment of nosocomial pneumonia: a meta-analysis. Infect Chemother. 2016;48:81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wenzler E, Fraidenburg DR, Scardina T, Danziger LH. Inhaled antibiotics for gram-negative respiratory infections. Clin Microbiol Rev. 2016;29:581–632.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Torres A, Motos A, Battaglini D, Li Bassi G. Inhaled amikacin for severe gram-negative pulmonary infections in the intensive care unit: current status and future prospects. Crit Care. 2018. https://doi.org/10.1186/s13054-018-1958-4.

  99. Karaiskos I, Antoniadou A, Giamarellou H. Combination therapy for extensively-drug resistant gram-negative bacteria. Expert Rev Anti-Infect Ther. 2017;15:1123–40.

    Article  CAS  PubMed  Google Scholar 

  100. Sorbera M, Chung E, Ho CW, Marzella N. Ceftolozane/tazobactam: a new option in the treatment of complicated gram-negative infections. P T. 2014;39:825–32.

    PubMed  PubMed Central  Google Scholar 

  101. Farrell DJ, Flamm RK, Sader HS, Jones RN. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2011–2012). Antimicrob Agents Chemother. 2013;57:6305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhanel GG, Chung P, Adam H, et al. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs. 2014;74:31–51.

    Article  CAS  PubMed  Google Scholar 

  103. Liscio JL, Mahoney MV, Hirsch EB. Ceftolozane/tazobactam and ceftazidime/avibactam: two novel β-lactam/β-lactamase inhibitor combination agents for the treatment of resistant gram-negative bacterial infections. Int J Antimicrob Agents. 2015;46:266–71.

    Article  CAS  PubMed  Google Scholar 

  104. Sader HS, Castanheira M, Shortridge D, Mendes RE, Flamm RK. Antimicrobial activity of ceftazidime-avibactam tested against multidrug-resistant Enterobacteriaceae and Pseudomonas aeruginosa isolates from U.S. Medical Centers, 2013 to 2016. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/AAC.01045-17.

  105. Torres A, Zhong N, Pachl J, et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis. 2018;18:285–95.

    Article  CAS  PubMed  Google Scholar 

  106. Stone GG, Newell P, Gasink LB, Broadhurst H, Wardman A, Yates K, Chen Z, Song J, Chow JW. Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: pooled data from the ceftazidime/avibactam phase III clinical trial programme. J Antimicrob Chemother. 2018;73:2519–23.

    Article  CAS  PubMed  Google Scholar 

  107. Ito A, Sato T, Ota M, et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria. Antimicrob Agents Chemother. 2018. https://doi.org/10.1128/AAC.01454-17.

  108. Portsmouth S, van Veenhuyzen D, Echols R, Machida M, Ferreira JCA, Ariyasu M, Tenke P, Den Nagata T. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2018;18:1319–28.

    Article  CAS  PubMed  Google Scholar 

  109. Loutit J, Fusaro K, Zhang S, Morgan E, Alexander E, Griffith D, Lomovskaya O, Dudley MN. Meropenem-vaborbactam (M-V) compared with Piperacillin-tazobactam (P-T) in the treatment of adults with complicated urinary tract infections (cUTI), including acute pyelonephritis (AP) in a phase 3 randomized, double-blind, double-dummy trial (TANGO 1). Open Forum Infect Dis. 2016. https://doi.org/10.1093/ofid/ofw195.07.

  110. Lapuebla A, Abdallah M, Olafisoye O, Cortes C, Urban C, Quale J, Landman D. Activity of meropenem combined with RPX7009, a novel β-lactamase inhibitor, against gram-negative clinical isolates in New York city. Antimicrob Agents Chemother. 2015;59:4856–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Castanheira M, Huband MD, Mendes RE, Flamm RK. Meropenem-vaborbactam tested against contemporary gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, KPC-producing, multidrug-resistant, and extensively drug-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/AAC.00567-17.

  112. Zhanel GG, Lawrence CK, Adam H, et al. Imipenem–relebactam and meropenem–vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs. 2018;78:65–98.

    Article  CAS  PubMed  Google Scholar 

  113. Lob SH, Hackel MA, Kazmierczak KM, Young K, Motyl MR, Karlowsky JA, Sahm DF. In vitro activity of imipenem-relebactam against gram-negative ESKAPE pathogens isolated by clinical laboratories in the United States in 2015 (results from the SMART global surveillance program). Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/AAC.02209-16.

  114. Castanheira M, Deshpande LM, Woosley LN, Serio AW, Krause KM, Flamm RK. Activity of plazomicin compared with other aminoglycosides against isolates from European and adjacent countries, including Enterobacteriaceae molecularly characterized for aminoglycoside-modifying enzymes and other resistance mechanisms. J Antimicrob Chemother. 2018;73:3346–54.

    CAS  PubMed  Google Scholar 

  115. Wagenlehner FME, Cloutier DJ, Komirenko AS, et al. Once-daily plazomicin for complicated urinary tract infections. N Engl J Med. 2019;380:729–40.

    Article  CAS  PubMed  Google Scholar 

  116. Karlowsky JA, Kazmierczak KM, de Jonge BLM, Hackel MA, Sahm DF, Bradford PA. In vitro activity of aztreonam-avibactam against Enterobacteriaceae and Pseudomonas aeruginosa isolated by clinical laboratories in 40 countries from 2012 to 2015. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/AAC.00472-17.

  117. Wang X, Zhang F, Zhao C, et al. In vitro activities of ceftazidime-avibactam and aztreonam-avibactam against 372 gram-negative bacilli collected in 2011 and 2012 from 11 teaching hospitals in China. Antimicrob Agents Chemother. 2014;58:1774–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Walsh CC, McIntosh MP, Peleg AY, Kirkpatrick CM, Bergen PJ. In vitro pharmacodynamics of fosfomycin against clinical isolates of Pseudomonas aeruginosa. J Antimicrob Chemother. 2015;70:3042–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costi D. Sifri .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hogan, J.I., Hill, B.K., Sifri, C.D. (2021). Pseudomonas aeruginosa Infections in Transplant: Epidemiology and Emerging Treatment Options. In: Morris, M.I., Kotton, C.N., Wolfe, C.R. (eds) Emerging Transplant Infections. Springer, Cham. https://doi.org/10.1007/978-3-030-25869-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25869-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25868-9

  • Online ISBN: 978-3-030-25869-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics