Skip to main content

Antioxidant Defense System and Reactive Oxygen Species (ROS) Interplay in Plants Under Drought Condition

  • Living reference work entry
  • First Online:
Handbook of Climate Change Management

Abstract

The enhanced level of reactive oxygen species (ROS) is deemed as fundamental behavioral evidence of plants under drought condition. Crop plants may encounter a wide array of environmental stresses under field conditions which could substantially reduce their growth and productivity. The magnitude of the effects of these stresses can be estimated by investigating the regulation in the physiological and biochemical mechanisms in plants. In biological systems, the redox reaction produces free radicals that are quite harmful to biological structures and cell organelles. Among different ROS, superoxide radical (O−2), hydroxyl radical (OH), singlet oxygen (O2), hydrogen peroxide (H2O2), and other associated hydroxyl radicals are the most active forms and harmful for the plant cell. Excess ROS production generally leads to phytotoxic effects on crop plants such as lipid peroxidation as well as a decrease in plant growth through the unique protein and DNA transmutation. Hence, plant defense systems are triggered under drought which has an impact on cellular functionality to counter the oxidative stress. Crop plants are immotile, so they are unable to escape from ecological stress conditions; thus plants are well equipped with an innate protective mechanism that helps in quenching free radicals, stabilizing cellular and subcellular membranes/structures, maintaining redox potential, and regulating the antioxidant defense responses under drought. Thus, the main identifying aspect of plant stress tolerance ability is its potential to quest and/or counter the harmful ROS. The adaptiveness of higher plants under drought appears to be the result of a strong defense system. In this review, mechanisms of enzymatic and nonenzymatic protection system against abiotic stresses have been discussed. Moreover, the biosynthesis, localization, and transfer of antioxidants within the cell under drought conditions are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AA:

Ascorbic acid

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

CAT:

Catalases

DNA:

Deoxyribonucleic acid

GPX:

Glutathione peroxidases

GR:

Glutathione reductase

GSH:

Glutathione

H2O2:

hydrogen peroxide

NADPH:

Nicotinamide adenine dinucleotide phosphate

O2:

Singlet oxygen

O−2:

Superoxide radical

OH:

Hydroxyl radical

POD:

Peroxidases

PUFA:

Polyunsaturated fatty acid

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613

    Article  Google Scholar 

  • Ali A, Alqurainy F (2006) Activities of antioxidants in plants under environmental stress. In: The lutein-prevention and treatment for diseases, pp 187–256

    Google Scholar 

  • Ali F, Bano A, Fazal A (2017) Recent methods of drought stress tolerance in plants. Plant Growth Regul 82:363–375

    Article  CAS  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S et al (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390. https://doi.org/10.1093/jxb/ern277

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341. https://doi.org/10.1093/jexbot/53.372.1331

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I et al (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids-a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Aono M, Saji H, Fujiyama K et al (2016) Decrease in activity of glutathione reductase enhances paraquat sensitivity in transgenic Nicotiana tabacum. Plant Physiol 107:645–648. https://doi.org/10.1104/pp.107.2.645

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396. https://doi.org/10.1104/pp.106.082040

    Article  CAS  Google Scholar 

  • Asadi karam E, Keramat B, Sorbo S et al (2017) Interaction of triacontanol and arsenic on the ascorbate-glutathione cycle and their effects on the ultrastructure in Coriandrum sativum L. Environ Exp Bot 141:161–169

    Article  CAS  Google Scholar 

  • Avramova V, AbdElgawad H, Zhang Z et al (2015) Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol 169:1382–1396. https://doi.org/10.1104/pp.15.00276

    Article  CAS  Google Scholar 

  • Avsian-Kretchmer O (2004) The salt-stress signal transduction pathway that activates the gpx1 promoter is mediated by intracellular H2O2, different from the pathway induced by extracellular H2O2. Plant Physiol 135:1685–1696. https://doi.org/10.1104/pp.104.041921

    Article  CAS  Google Scholar 

  • Bagnoli F, Giannino D, Caparrini S et al (2002) Molecular cloning, characterisation and expression of a manganese superoxide dismutase gene from peach (Prunus persica [L.] Batsch). Mol Genet Genomics 267:321–328. https://doi.org/10.1007/s00438-002-0664-7

    Article  CAS  Google Scholar 

  • Balfagón D, Zandalinas SI, Gómez-Cadenas A (2019) High temperatures change the perspective: integrating hormonal responses in citrus plants under co-occurring abiotic stress conditions. Physiol Plant 165:183–197. https://doi.org/10.1111/ppl.12815

    Article  CAS  Google Scholar 

  • Banerjee S, Goswami R (2013) GST profile expression study in some selected plants: in silico approach. Mol Cell Biochem 380:283–300. https://doi.org/10.1007/s11010-009-0258-3

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2019) Role of glutathione in plant abiotic stress tolerance. In: Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. John Wiley & Sons, pp 159–172

    Google Scholar 

  • Bartwal A, Arora S (2017) Drought stress-induced enzyme activity and mdar and apx gene expression in tolerant and susceptible genotypes of Eleusine coracana (L.). In Vitro Cell Dev Biol 53:41–49

    Article  CAS  Google Scholar 

  • Boguszewska D, Grudkowska M, Zagdańska B (2010) Drought-responsive antioxidant enzymes in potato (Solanum tuberosum L.). Potato Res 53:373–382. https://doi.org/10.1007/s11540-010-9178-6

    Article  CAS  Google Scholar 

  • Bonifacio A, Martins MO, Ribeiro CW et al (2011) Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant Cell Environ 34:1705–1722. https://doi.org/10.1111/j.1365-3040.2011.02366.x

    Article  CAS  Google Scholar 

  • Case A (2017) On the origin of superoxide dismutase: an evolutionary perspective of superoxide-mediated redox signaling. Antioxidants 6:82. https://doi.org/10.3390/antiox6040082

    Article  CAS  Google Scholar 

  • Chacón-López A, Ibarra-Laclette E, Sánchez-Calderón L et al (2011) Global expression pattern comparison between low phosphorus insensitive 4 and WT Arabidopsis reveals an important role of reactive oxygen species and jasmonic acid in the root tip response to phosphate starvation. Plant Signal Behav 6:382–392

    Article  CAS  Google Scholar 

  • Chang CCC, Slesak I, Jorda L et al (2009) Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol 150:670–683. https://doi.org/10.1104/pp.109.135566

    Article  CAS  Google Scholar 

  • Chen G-X, Asada K (2017) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998, 1989. https://doi.org/10.1093/oxfordjournals.pcp.a077844

    Article  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  CAS  Google Scholar 

  • Chen Z, Young TE, Ling J et al (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci 100:3525–3530. https://doi.org/10.1073/pnas.0635176100

    Article  CAS  Google Scholar 

  • Chen W, Chang AC, Wu L (2007) Assessing long-term environmental risks of trace elements in phosphate fertilizers. Ecotoxicol Environ Saf 67:48–58. https://doi.org/10.1016/j.ecoenv.2006.12.013

    Article  CAS  Google Scholar 

  • Chen K, Zhang M, Zhu H et al (2017) Ascorbic acid alleviates damage from heat stress in the photosystem II of tall fescue in both the photochemical and thermal phases. Front Plant Sci 8:1373

    Article  Google Scholar 

  • Chew S-C, Tan C-P, Long K, Nyam K-L (2016) Effect of chemical refining on the quality of kenaf (Hibiscus cannabinus) seed oil. Ind Crops Prod 89:59–65

    Article  CAS  Google Scholar 

  • Dai L, Kobayashi K, Nouchi I et al (2020) Quantifying determinants of ozone detoxification by apoplastic ascorbate in peach (Prunus persica) leaves using a model of ozone transport and reaction. Glob Chang Biol 26:3147–3162

    Article  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  • Das SK, Patra JK, Thatoi H (2016) Antioxidative response to abiotic and biotic stresses in mangrove plants: a review. Int Rev Hydrobiol 101:3–19. https://doi.org/10.1002/iroh.201401744

    Article  CAS  Google Scholar 

  • Davey MW, Van Montagu M, Inz D et al (2000) Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:73.0.CO;2-6

    Article  CAS  Google Scholar 

  • Davletova S (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell Online 17:268–281. https://doi.org/10.1105/tpc.104.026971

    Article  CAS  Google Scholar 

  • de Freitas-Silva L, Rodríguez-Ruiz M, Houmani H et al (2017) Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation. J Plant Physiol 218:196–205

    Article  CAS  Google Scholar 

  • Decker H, van Holde KE, Decker H, van Holde KE (2010) Coping with oxygen. In: Oxygen and the evolution of life. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 43–59

    Google Scholar 

  • Depege N, Drevet J, Boyer N (1998) Molecular cloning and characterization of tomato cDNAs encoding glutathione peroxidase-like proteins. Eur J Biochem 253:445–451. https://doi.org/10.1046/j.1432-1327.1998.2530445.x

    Article  CAS  Google Scholar 

  • Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 1830:3217–3266

    Article  CAS  Google Scholar 

  • Dhindsa RS (1991) Drought stress, enzymes of glutathione metabolism, oxidation injury, and protein synthesis in Tortula ruralis. Plant Physiol 95:648–651. https://doi.org/10.1104/pp.95.2.648

    Article  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109. https://doi.org/10.1093/jexbot/52.358.1101

    Article  CAS  Google Scholar 

  • Dunning S, Ur Rehman A, Tiebosch MH et al (2013) Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death. Biochim Biophys Acta Mol Basis Dis 1832:2027–2034. https://doi.org/10.1016/j.bbadis.2013.07.008

    Article  CAS  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284. https://doi.org/10.1007/BF00194008

    Article  CAS  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases enzymes with multiple functions in sickness and in health (GSTs en plantas 2000). Trends Plant Sci 5:193–198. Elsevier

    Article  CAS  Google Scholar 

  • El-Shahawy TAE-G (2018) The compensatory effect of glutathione on alleviating salinity–induced modulations in growth and biochemical traits in maize irrigated with diluted seawater. Agric Eng Int CIGR J 19:80–90

    Google Scholar 

  • Elstner EF (2014) Metabolism of activated oxygen species. In: Biochemistry of metabolism. Elsevier, pp 253–315

    Google Scholar 

  • Engwa GA (2018) Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. In: Phytochemicals – source of antioxidants and role in disease prevention, pp 49–73

    Google Scholar 

  • Fan J-H, Liu J-Y, Zhang R-Q et al (2002) Molecular cloning and expression of a phospholipid hydroperoxide glutathione peroxidase homolog in Oryza sativa. Biochim Biophys Acta Gene Struct Expr 1493:225–230. https://doi.org/10.1016/s0167-4781(00)00152-4

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer Netherlands, Dordrecht, pp 153–188

    Chapter  Google Scholar 

  • Fazeli F, Ghorbanli M, Niknam V (2007) Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biol Plant 51:98–103

    Article  CAS  Google Scholar 

  • Fenech M, Amaya I, Valpuesta V, Botella MA (2019) Vitamin C content in fruits: biosynthesis and regulation. Front Plant Sci 9:2006

    Article  Google Scholar 

  • Foyer CH (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell Online 17:1866–1875. https://doi.org/10.1105/tpc.105.033589

    Article  CAS  Google Scholar 

  • Fu H-Y, Liu S-L, Chiang Y-R (2020) Biosynthesis of ascorbic acid as a glucose-induced photoprotective process in the extremophilic red alga Galdieria partita. Front Microbiol 10:3005

    Article  Google Scholar 

  • Gadea J, Conejero V, Vera P (1999) Developmental regulation of a cytosolic ascorbate peroxidase gene from tomato plants. Mol Gen Genet MGG 262:212–219. https://doi.org/10.1007/s004380051077

    Article  CAS  Google Scholar 

  • Gapińska M, Skłodowska M, Gabara B (2007) Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant 30:11–18. https://doi.org/10.1007/s11738-007-0072-z

    Article  CAS  Google Scholar 

  • Garcia-Jimenez P, Just PM, Delgado AM, Robaina RR (2007) Transglutaminase activity decrease during acclimation to hyposaline conditions in marine seaweed Grateloupia doryphora (Rhodophyta, Halymeniaceae). J Plant Physiol 164:367–370

    Article  CAS  Google Scholar 

  • Gill SS, Anjum NA, Gill R et al (2015) Superoxide dismutase – mentor of abiotic stress tolerance in crop plants. Environ Sci Pollut Res 22:10375–10394. https://doi.org/10.1007/s11356-015-4532-5

    Article  CAS  Google Scholar 

  • Giovannoni JJ (2007) Completing a pathway to plant vitamin C synthesis. Proc Natl Acad Sci 104:9109–9110

    Article  CAS  Google Scholar 

  • Gong P, Luo Y, Huang F et al (2019) Disruption of a Upf1-like helicase-encoding gene OsPLS2 triggers light-dependent premature leaf senescence in rice. Plant Mol Biol 100:133–149

    Article  CAS  Google Scholar 

  • Gopi R, Jaleel CA, Sairam R et al (2007) Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L. Colloids Surf B Biointerfaces 60:180–186

    Article  CAS  Google Scholar 

  • Greco M, Chiappetta A, Brun L (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64:33–53. https://doi.org/10.1093/jxb/err313

    Article  CAS  Google Scholar 

  • Guitard R, Paul J-F, Nardello-Rataj V, Aubry J-M (2016) Myricetin, rosmarinic and carnosic acids as superior natural antioxidant alternatives to α-tocopherol for the preservation of omega-3 oils. Food Chem 213:284–295

    Article  CAS  Google Scholar 

  • Gumus R, Imik H (2016) Effects of vitamin E (α-Tocopherol acetate) on serum lipid profile, Ca and P levels of broilers exposed to heat stress. J Agric Vet Sci 3:105–110

    Google Scholar 

  • Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17. https://doi.org/10.1007/BF00390803

    Article  CAS  Google Scholar 

  • Hamilton EW (2002) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274. https://doi.org/10.1104/pp.126.3.1266

    Article  Google Scholar 

  • Hasanuzzaman M, Alam MM, Rahman A et al (2014) Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed Res Int 2014:1–17. https://doi.org/10.1155/2014/757219

    Article  Google Scholar 

  • Havaux M (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell Online 17:3451–3469. https://doi.org/10.1105/tpc.105.037036

    Article  CAS  Google Scholar 

  • Herbette S, Lenne C, Leblanc N et al (2002) Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur J Biochem 269:2414–2420. https://doi.org/10.1046/j.1432-1033.2002.02905.x

    Article  CAS  Google Scholar 

  • Herbette S, Lenne C, de Labrouhe DT et al (2003) Transcripts of sunflower antioxidant scavengers of the SOD and GPX families accumulate differentially in response to downy mildew infection, phytohormones, reactive oxygen species, nitric oxide, protein kinase and phosphatase inhibitors. Physiol Plant 119:418–428. https://doi.org/10.1034/j.1399-3054.2003.00186.x

    Article  CAS  Google Scholar 

  • Hu WH, Shi K, Song XS et al (2006) Different effects of chilling on respiration in leaves and roots of cucumber (Cucumis sativus). Plant Physiol Biochem 44:837–843. https://doi.org/10.1016/J.PLAPHY.2006.10.016

    Article  CAS  Google Scholar 

  • Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54:287–293

    Article  Google Scholar 

  • Iqbal A, Yabuta Y, Takeda T et al (2006) Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana. FEBS J 273:5589–5597. https://doi.org/10.1111/j.1742-4658.2006.05548.x

    Article  CAS  Google Scholar 

  • Jain M, Nagar P, Goel P et al (2018) Second messengers: central regulators in plant abiotic stress response. In: Abiotic stress-mediated sensing and signaling in plants: an omics perspective. Springer Singapore, Singapore, pp 47–94

    Chapter  Google Scholar 

  • Jardim-Messeder D, Caverzan A, Rauber R et al (2018) Thylakoidal APX modulates hydrogen peroxide content and stomatal closure in rice (Oryza sativa L.). Environ Exp Bot 150:46–56

    Article  CAS  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmüller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

    Article  CAS  Google Scholar 

  • Kapoor D, Singh S, Kumar V et al (2019) Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19:100182

    Article  CAS  Google Scholar 

  • Kerchev PI, Pellny TK, Vivancos PD et al (2011) The transcription factor ABI4 is required for the ascorbic acid–dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis. Plant Cell 23:3319–3334. https://doi.org/10.1105/tpc.111.090100

    Article  CAS  Google Scholar 

  • Kim S-E, Lee C-J, Ji CY et al (2019) Transgenic sweetpotato plants overexpressing tocopherol cyclase display enhanced α-tocopherol content and abiotic stress tolerance. Plant Physiol Biochem 144:436–444

    Article  CAS  Google Scholar 

  • Kka N, Rookes J, Cahill D (2018) The influence of ascorbic acid on root growth and the root apical meristem in Arabidopsis thaliana. Plant Physiol Biochem 129:323–330

    Article  CAS  Google Scholar 

  • Kothamasi D, Wannijn J, Van Hees M et al (2019) Exposure to ionizing radiation affects the growth of ectomycorrhizal fungi and induces increased melanin production and increased capacities of reactive oxygen species scavenging enzymes. J Environ Radioact 197:16–22. https://doi.org/10.1016/J.JENVRAD.2018.11.005

    Article  CAS  Google Scholar 

  • Koutroulis AG, Papadimitriou LV, Grillakis MG et al (2019) Global water availability under high-end climate change: a vulnerability based assessment. Glob Planet Change 175:52–63. https://doi.org/10.1016/j.gloplacha.2019.01.013

    Article  Google Scholar 

  • Leisinger U, Leisinger U, Rüfenacht K et al (2001) The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen. Plant Mol Biol 46:395–408

    Article  CAS  Google Scholar 

  • Leng G, Tang Q, Rayburg S (2015) Climate change impacts on meteorological, agricultural and hydrological droughts in China. Glob Planet Change 126:23–34. https://doi.org/10.1016/j.gloplacha.2015.01.003

    Article  Google Scholar 

  • León AM, Corpas FJ, Gómez M et al (2002) Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol Biochem 40:813–820. https://doi.org/10.1016/s0981-9428(02)01444-4

    Article  Google Scholar 

  • Li J, Yu G, Sun X et al (2015) AcPIP2, a plasma membrane intrinsic protein from halophyte Atriplex canescens, enhances plant growth rate and abiotic stress tolerance when overexpressed in Arabidopsis thaliana. Plant Cell Rep 34:1401–1415

    Article  CAS  Google Scholar 

  • Li Q, Li P, Htwe NMPS et al (2019) Antepenultimate residue at the C-terminus of NADPH oxidase RBOHD is critical for its function in the production of reactive oxygen species in Arabidopsis. J Zhejiang Univ B 20:713–727

    Article  CAS  Google Scholar 

  • Light GG, Mahan JR, Roxas VP, Allen RD (2005) Transgenic cotton (Gossypium hirsutum L.) seedlings expressing a tobacco glutathione S-transferase fail to provide improved stress tolerance. Planta 222:346–354. https://doi.org/10.1007/s00425-005-1531-7

    Article  CAS  Google Scholar 

  • Lillig CH, Berndt C (2012) Glutaredoxins in thiol/disulfide exchange. Antioxid Redox Signal 18:1654–1665. https://doi.org/10.1089/ars.2012.5007

    Article  CAS  Google Scholar 

  • Lismont C, Revenco I, Fransen M (2019) Peroxisomal hydrogen peroxide metabolism and signaling in health and disease. Int J Mol Sci 20:3673

    Article  CAS  Google Scholar 

  • Liu S, Cheng Y, Zhang X et al (2007) Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Mol Biol 64:49–58. https://doi.org/10.1007/s11103-007-9133-3

    Article  CAS  Google Scholar 

  • Liu D, Zou J, Meng Q et al (2009) Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 18:134–143. https://doi.org/10.1007/s10646-008-0266-1

    Article  CAS  Google Scholar 

  • Machinandiarena MF, Oyarburo NS, Daleo GR et al (2018) The reinforcement of potato cell wall as part of the phosphite-induced tolerance to UV-B radiation. Biol Plant 62:388–394

    Article  CAS  Google Scholar 

  • Madany M, Khalil R (2017) Seed priming with ascorbic acid or calcium chloride mitigates the adverse effects of drought stress in sunflower (Helianthus annuus L.) seedlings. Egypt J Exp Biol 1. https://doi.org/10.5455/egyjebb.20170409090612

  • Maeda H, DellaPenna D (2007) Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol 10:260–265

    Article  CAS  Google Scholar 

  • Magbanua ZV, De Moraes CM, Brooks TD et al (2007) Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Mol Plant-Microbe Interact 20:697–706. https://doi.org/10.1094/MPMI-20-6-0697

    Article  CAS  Google Scholar 

  • Majoul T, Bancel E, Triboï E et al (2004) Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from non-prolamins fraction. Proteomics 4:505–513. https://doi.org/10.1002/pmic.200300570

    Article  CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Chang-Xing Z et al (2008) Variations in growth and pigment compositon of sunflower varieties under early season drought stress. Glob J Mol Sci 3:50–56

    CAS  Google Scholar 

  • Mano J, Ohno C, Domae Y, Asada K (2001) Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochim Biophys Acta Bioenerg 1504:275–287. https://doi.org/10.1016/S0005-2728(00)00256-5

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl DG, Butko E, Springer F et al (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259. https://doi.org/10.1111/j.1365-313X.2008.03410.x

    Article  CAS  Google Scholar 

  • Mhamdi A, Hager J, Chaouch S et al (2010a) Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153:1144–1160. https://doi.org/10.1104/pp.110.153767

    Article  CAS  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S et al (2010b) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Article  CAS  Google Scholar 

  • Miao Y, Lv D, Wang P et al (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell Online 18:2749–2766. https://doi.org/10.1105/tpc.106.044230

    Article  CAS  Google Scholar 

  • Millar AH (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133:443–447. https://doi.org/10.1104/pp.103.028399

    Article  CAS  Google Scholar 

  • Miller AF (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586:585–595

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Mohsin N, Wang Z (2020) Abscisic acid and glycine betaine mediated tolerance mechanisms under drought stress and recovery in Axonopus compressus: a new insight. Sci Rep (Nature Publ Group) 10:1–10

    Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474. https://doi.org/10.1007/s11120-005-8811-8

    Article  CAS  Google Scholar 

  • Munné-Bosch S, Jubany-Marí T, Alegre L (2003) Enhanced photo- and antioxidative protection, and hydrogen peroxide accumulation in drought-stressed Cistus clusii and Cistus albidus plants. Tree Physiol 23:1–12. https://doi.org/10.1093/treephys/23.1.1

    Article  Google Scholar 

  • Muñoz P, Munné-Bosch S (2019) Vitamin E in plants: biosynthesis, transport, and function. Trends Plant Sci 24:1040–1051

    Article  CAS  Google Scholar 

  • Navrot N, Collin V, Gualberto J et al (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379. https://doi.org/10.1104/pp.106.089458

    Article  CAS  Google Scholar 

  • Nawaz M, Wang Z (2020) Abscisic acid and glycine betaine mediated tolerance mechanisms under drought stress and recovery in Axonopus compressus: a new insight. Sci Rep 10:1–10

    Article  CAS  Google Scholar 

  • Ngamhui N, Tantisuwichwong N, Roytrakul S et al (2015) Relationship between drought tolerance with activities of antioxidant enzymes in sugarcane. Indian J Plant Physiol 20:145–150. https://doi.org/10.1007/s40502-015-0155-6

    Article  CAS  Google Scholar 

  • Noctor G (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304. https://doi.org/10.1093/jexbot/53.372.1283

    Article  CAS  Google Scholar 

  • Noctor G, Reichheld J-P, Foyer CH (2018) ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 80:3–12. Elsevier

    Article  CAS  Google Scholar 

  • Ogawa K, Hatano-Iwasaki A, Yanagida M, Iwabuchi M (2004) Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering. Plant Cell Physiol 45:1–8. https://doi.org/10.1093/pcp/pch008

    Article  CAS  Google Scholar 

  • Orabi SA, Abou-Hussein SD, Sharara FA (2017) Role of hydrogen peroxide and α-tocopherol in alleviating the harmful effect of low temperature on cucumber (Cucumis sativas L.) plants. Middle East J Appl Sci 7:914–926

    Google Scholar 

  • Ortiz-Espín A, Sánchez-Guerrero A, Sevilla F, Jiménez A (2017) The role of ascorbate in plant growth and development. In: Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham, pp 25–45

    Chapter  Google Scholar 

  • Packer L, Weber SU, Rimbach G (2018) Molecular aspects of α-tocotrienol antioxidant action and cell signalling. J Nutr 131:369S–373S. https://doi.org/10.1093/jn/131.2.369s

    Article  Google Scholar 

  • Pandey S, Fartyal D, Agarwal A et al (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:581

    Article  Google Scholar 

  • Passaia G, Queval G, Bai J et al (2014) The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsi. J Exp Bot 65:1403–1413. https://doi.org/10.1093/jxb/ert486

    Article  CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265. https://doi.org/10.1007/s00299-005-0972-6

    Article  CAS  Google Scholar 

  • Passardi F, Theiler G, Zamocky M et al (2007) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611

    Article  CAS  Google Scholar 

  • Polidoros AN, Mylona PV, Scandalios JG (2001) Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress. Transgenic Res 10:555–569. https://doi.org/10.1023/A:1013027920444

    Article  CAS  Google Scholar 

  • Priya M, Dhanker OP, Siddique KHM et al (2019) Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. Theor Appl Genet 1:1–32

    Google Scholar 

  • Queirós B, Barros L, Baptista P et al (2007) Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103:413–419. https://doi.org/10.1016/j.foodchem.2006.07.038

    Article  CAS  Google Scholar 

  • Rao DE, Chaitanya KV (2016) Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol Plant 60:201–218

    Article  CAS  Google Scholar 

  • Rausch T, Gromes R, Liedschulte V et al (2007) Novel insight into the regulation of GSH biosynthesis in higher plants. Plant Biol 9:565–572. https://doi.org/10.1055/s-2007-965580

    Article  CAS  Google Scholar 

  • Ron M (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. https://doi.org/10.1016/s1360-1385(02)02312-9

    Article  Google Scholar 

  • Rosa SB, Caverzan A, Teixeira FK et al (2010) Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochemistry 71:548–558. https://doi.org/10.1016/j.phytochem.2010.01.003

    Article  CAS  Google Scholar 

  • Sadiq M, Akram NA, Ashraf M et al (2019) Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. J Plant Growth Regul 38(4):1325–1340

    Google Scholar 

  • Şahin G, De Tullio MC (2010) A winning two pair: role of the redox pairs AsA/DHA and GSH/GSSG in signal transduction. In: Ascorbate-glutathione pathway and stress tolerance in plants. Springer Netherlands, Dordrecht, pp 251–263

    Chapter  Google Scholar 

  • Saibi W, Brini F (2018) Superoxide dismutase (SOD) and abiotic stress tolerance in plants: an overview. In: Magliozzi S (ed) Superoxide dismutase: structure, synthesis and applications. Nova Science Publishers, New York, pp 101–142

    Google Scholar 

  • Saini RK, Keum Y-S (2016) Tocopherols and tocotrienols in plants and their products: a review on methods of extraction, chromatographic separation, and detection. Food Res Int 82:59–70

    Article  CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91. https://doi.org/10.1007/s10535-005-5091-2

    Article  CAS  Google Scholar 

  • Schantz ML, Schreiber H, Guillemaut P, Schantz R (1995) Changes in ascorbate peroxidase activities during fruit ripening in Capsicum annuum. FEBS Lett 358:149–152. https://doi.org/10.1016/0014-5793(94)01413-U

    Article  CAS  Google Scholar 

  • Scheibe R, Beck E (2011) Drought, desiccation, and oxidative stress. Springer, Berlin/Heidelberg, pp 209–231

    Google Scholar 

  • Schmidt M, Dehne S, Feierabend J (2002) Post-transcriptional mechanisms control catalase synthesis during its light-induced turnover in rye leaves through the availability of the hemin cofactor and reversible changes of the translation efficiency of mRNA. Plant J 31:601–613. https://doi.org/10.1046/j.1365-313X.2002.01382.x

    Article  CAS  Google Scholar 

  • Seminario A, Song L, Zulet A et al (2017) Drought stress causes a reduction in the biosynthesis of ascorbic acid in soybean plants. Front Plant Sci 8:1042. https://doi.org/10.3389/fpls.2017.01042

    Article  Google Scholar 

  • Shanker AK, Djanaguiraman M, Sudhagar R et al (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO 4) roots. Plant Sci 166:1035–1043. https://doi.org/10.1016/J.PLANTSCI.2003.12.015

    Article  CAS  Google Scholar 

  • Shao HB, Liang ZS, Shao MA et al (2005) Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficits. Colloids Surf B Biointerfaces 43:221–227. https://doi.org/10.1016/j.colsurfb.2005.05.005

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Singh A, Kumar A, Yadav S, Singh IK (2019) Reactive oxygen species-mediated signaling during abiotic stress. Plant Gene 18:p100173. https://doi.org/10.1016/j.plgene.2019.100173

    Article  CAS  Google Scholar 

  • Singh Gill S, Khan N, Anjum N et al (2011) Amelioration of cadmium stress in crop plants by nutrient management: morphological, physiological and biochemical aspects. Plant Stress 5:1–23

    Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Plant Sci 19:267–290. https://doi.org/10.1080/07352680091139231

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Miranda M, Prakash HS et al (2004) Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPX gene specifically up-regulated by NaCl in a salt-tolerant line. J Plant Physiol 161:467–477. https://doi.org/10.1078/0176-1617-01112

    Article  CAS  Google Scholar 

  • Taubert A, Jakob T, Wilhelm C (2019) Glycolate from microalgae: an efficient carbon source for biotechnological applications. Plant Biotechnol J 17:1538–1546

    Article  CAS  Google Scholar 

  • Teixeira FK, Menezes-Benavente L, Galvão VC et al (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224:300–314. https://doi.org/10.1007/s00425-005-0214-8

    Article  CAS  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    Article  CAS  Google Scholar 

  • Tsikrika K, Chu BS, Bremner DH, Lemos MA (2018) The effect of different frequencies of ultrasound on the activity of horseradish peroxidase. LWT Food Sci Technol 89:591–595. https://doi.org/10.1016/j.lwt.2017.11.021

    Article  CAS  Google Scholar 

  • Van Camp W, Inzé D, Van Montagu M (1999) The regulation and function of tobacco superoxide dismutases. Free Radic Biol Med 23:515–520

    Article  Google Scholar 

  • Wallert M, Ziegler M, Wang X et al (2019) α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biol 26:101292

    Article  CAS  Google Scholar 

  • Wang C, Li B, Li H, Liu Y (2010) Effects of Se, Zn and their interaction on the subcellular distribution of Selenium in spring tea leaves. Acta Hortic Sin 37:794–800

    Google Scholar 

  • Wu B, Zhang G, Zhang L et al (2020) Key factors in the ligand effects on the photo redox cycling of aqueous iron species. Geochim Cosmochim Acta 281:1–11

    Google Scholar 

  • Xiong L, Schumaker KS, Zhu J-K (2017) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183. https://doi.org/10.1105/tpc.000596

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179. https://doi.org/10.1016/j.sajb.2009.10.007

    Article  CAS  Google Scholar 

  • Yamaguchi K, Mori H, Nishimura M (1995) A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol 36:1157–1162. https://doi.org/10.1093/oxfordjournals.pcp.a078862

    Article  CAS  Google Scholar 

  • Yang XD, Li WJ, Liu JY (2005) Isolation and characterization of a novel PHGPx gene in Raphanus sativus. Biochim Biophys Acta Gene Struct Expr 1728:199–205. https://doi.org/10.1016/j.bbaexp.2005.02.003

    Article  CAS  Google Scholar 

  • Yin L, Mano J, Tanaka K et al (2017) High level of reduced glutathione contributes to detoxification of lipid peroxide-derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress. Physiol Plant 161:211–223. https://doi.org/10.1111/ppl.12583

    Article  CAS  Google Scholar 

  • Zebelo SA (2019) Decrypting early perception of biotic stress on plants. Springer, Cham, pp 1–16

    Google Scholar 

  • Zhang W, Huang Z, Xu K et al (2019a) The effect of plant growth regulators on recovery of wheat physiological and yield-related characteristics at booting stage following chilling stress. Acta Physiol Plant 41:133

    Article  CAS  Google Scholar 

  • Zhang Y, Bharathi SS, Beck ME, Goetzman ES (2019b) The fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase can be a source of mitochondrial hydrogen peroxide. Redox Biol 26:101253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Construction of World First Class Discipline of Hainan University (No.RZZX201905), the National Natural Science Foundation of China (31060266), the Hainan Provincial Natural Science Foundation (310029). National Project on Sci-Tec Foundation Resources Survey (2017FY100600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nawaz, M., Anjum, S.A., Ashraf, U., Azeem, F., Wang, Z. (2021). Antioxidant Defense System and Reactive Oxygen Species (ROS) Interplay in Plants Under Drought Condition. In: Leal Filho, W., Luetz, J., Ayal, D. (eds) Handbook of Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-030-22759-3_121-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22759-3_121-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22759-3

  • Online ISBN: 978-3-030-22759-3

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics