Definition
Sirtuins are a class of NAD+-dependent enzymes that possess deacylase activity (including deacetylase, desuccinylase, demalonylase, demyristoylase, and depalmitoylase) or mono-ADP-ribosyltransferase activity. The name comes from the yeast gene “silent mating-type information regulation 2” (Sir2), the only sirtuin gene in yeast.
Overview
Sirtuins play a major role in regulation of almost all cellular functions. This entry briefly summarizes the actions of the 7 mammalian sirtuins, their protein targets, intracellular localization, the pathways they modulate, and their role in common diseases of aging. Abbreviations used are listed in Box 1. The importance of sirtuins in aging is widely appreciated. Current knowledge in this field is enormous, with numerous reviews providing more details (e.g., Morris 2013; Imai and Guarente 2016; O’Callaghan and Vassilopoulos 2017). Sirtuins 1, 6, and 7 are located in the nucleus, sirtuin 2 is cytoplasmic, and sirtuins 3, 4, and 5 are...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bonkowski MS, Sinclair DA (2016) Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol 17(11):679–690. https://doi.org/10.1038/nrm.2016.93
Borrás C, Monleón D, López-Grueso R et al (2011) RasGrf1 deficiency delays aging in mice. Aging (Albany NY) 3:262–276. https://doi.org/10.18632/aging.100279
Campagna J, Spilman P, Jagodzinska B et al (2018) A small molecule ApoE4-targeted therapeutic candidate that normalizes sirtuin 1 levels and improves cognition in an Alzheimer’s disease mouse model. Sci Rep 8(1):17574. https://doi.org/10.1038/s41598-018-35687-8
Guarente L (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14:1021–1026. https://doi.org/10.1101/gad.14.9.1021
He X, Zeng H, Chen JX (2019) Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease. J Cell Physiol 234(3):2252–2265. https://doi.org/10.1002/jcp.27200
Herranz D, Muñoz-Martin M, Cañamero M et al (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1:3. https://doi.org/10.1038/ncomms1001
Houtkooper RH, Cantó C, Wanders RJ et al (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31:194–223. https://doi.org/10.1210/er.2009-0026
Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238. https://doi.org/10.1038/nrm3293
Iachettini S, Trisciuoglio D, Rotili D et al (2018) Pharmacological activation of SIRT6 triggers lethal autophagy in human cancer cells. Cell Death Dis 9(10):996. https://doi.org/10.1038/s41419-018-1065-0
Imai SI, Guarente L (2016) It takes two to tango: NAD+ and sirtuins in aging/longevity control. NPJ Aging Mech Dis 2:16017. https://doi.org/10.1038/npjamd.2016.17
Imai S, Armstrong CM, Kaeberlein M et al (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800. https://doi.org/10.1038/35001622
Kane AE, Sinclair DA (2018) Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circ Res 123(7):868–885. https://doi.org/10.1161/CIRCRESAHA.118.312498
Kanfi Y, Naiman S, Amir G et al (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221. https://doi.org/10.1038/nature10815
Katsyuba E, Mottis A, Zietak M et al (2018) De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature 563(7731):354–359. https://doi.org/10.1038/s41586-018-0645-6
Kim D, Nguyen MD, Dobbin MM et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26:3169–3179. https://doi.org/10.1038/sj.emboj.7601758
Lee JJ, van de Ven RAH, Zaganjor E et al (2018) Inhibition of epithelial cell migration and Src/FAK signaling by SIRT3. Proc Natl Acad Sci U S A 115(27):7057–7062. https://doi.org/10.1073/pnas.1800440115
Li Y, Tollefsbol TO (2011) p16INK4a suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms. PLoS One 6:e17421. https://doi.org/10.1371/journal.pone.0017421
Li X, Khanna A, Li N et al (2011) Circulatory miR34a as an RNAbased, noninvasive biomarker for brain aging. Aging (Albany NY) 3:985–1002. https://doi.org/10.18632/aging.100371
Mattagajasingh I, Kim CS, Naqvi A et al (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 104:14855–14860. https://doi.org/10.1073/pnas.0704329104
Menghini R, Casagrande V, Cardellini M et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120:1524–1532. https://doi.org/10.1161/CIRCULATIONAHA.109.864629
Mercken EM, Mitchell SJ, Martin-Montalvo A et al (2014) SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13(5):787–796. https://doi.org/10.1111/acel.12220
Mills KF, Yoshida S, Stein LR et al (2016) Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab 24(6):795–806. https://doi.org/10.1016/j.cmet.2016.09.013
Milne JC, Lambert PD, Schenk S et al (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712–716. https://doi.org/10.1038/nature06261
Mitchell SJ, Martin-Montalvo A, Mercken EM et al (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 6(5):836–843
Morris BJ (2013) Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med 56:133–171. https://doi.org/10.1016/j.freeradbiomed.2012.10.525
Morris BJ, Willcox BJ, Donlon TA (2019) Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta 1865:1718. https://doi.org/10.1016/j.bbadis.2018.08.039
Mouchiroud L, Houtkooper RH, Moullan N et al (2013) The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154(2):430–441. https://doi.org/10.1016/j.cell.2013.06.016
Nisoli E, Tonello C, Cardile A et al (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317. https://doi.org/10.1126/science.1117728
O’Callaghan C, Vassilopoulos A (2017) Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell 16(6):1208–1218. https://doi.org/10.1111/acel.12685
Pardo PS, Boriek AM (2011) The physiological roles of Sirt1 in skeletal muscle. Aging (Albany NY) 3(4):430–437. https://doi.org/10.18632/aging.100312
Paredes S, Angulo-Ibanez M, Tasselli L et al (2018) The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. J Biol Chem 293(28):11242–11250. https://doi.org/10.1074/jbc.AC118.003325
Rajman L, Chwalek K, Sinclair DA (2018) Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab 27(3):529–547. https://doi.org/10.1016/j.cmet.2018.02.011
Rizzi L, Roriz-Cruz M (2018) Sirtuin 1 and Alzheimer’s disease: an up-to-date review. Neuropeptides 71:54–60. https://doi.org/10.1016/j.npep.2018.07.001
Ryu DR, Yu MR, Kong KH et al (2019) Sirt1-hypoxia-inducible factor-1alpha interaction is a key mediator of tubulointerstitial damage in the aged kidney. Aging Cell 18:e12904. https://doi.org/10.1111/acel.12904
Satoh A, Brace CS, Rensing N et al (2013) Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab 18(3):416–430. https://doi.org/10.1016/j.cmet.2013.07.013
Shin J, Kim J, Park H et al (2018) Investigating the role of Sirtuins in cell reprogramming. BMB Rep 51(10):500–507. https://doi.org/10.5483/BMBRep.2018.51.10.172
Shore D, Squire M, Nasmyth KA (1984) Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J 3:2817–2823.
Sidorova-Darmos E, Sommer R, Eubanks JH (2018) The role of SIRT3 in the brain under physiological and pathological conditions. Front Cell Neurosci 12:196. https://doi.org/10.3389/fncel.2018.00196
Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 91:1033–1042. https://doi.org/10.1016/S0092-8674(00)80493-6
Ungvari Z, Kaley G, de Cabo R et al (2010) Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 65:1028–1041. https://doi.org/10.1093/gerona/glq113
Xu J, Jackson CW, Khoury N et al (2018) Brain SIRT1 mediates metabolic homeostasis and neuroprotection. Front Endocrinol (Lausanne) 9:702. https://doi.org/10.3389/fendo.2018.00702
Yao ZQ, Zhang X, Zhen Y et al (2018) A novel small-molecule activator of Sirtuin-1 induces autophagic cell death/mitophagy as a potential therapeutic strategy in glioblastoma. Cell Death Dis 9(7):767. https://doi.org/10.1038/s41419-018-0799-z
Yoshino J, Mills KF, Yoon MJ et al (2011) Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 14:528–536. https://doi.org/10.1016/j.cmet.2011.08.014
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this entry
Cite this entry
Morris, B.J. (2021). Sirtuins in Aging. In: Gu, D., Dupre, M.E. (eds) Encyclopedia of Gerontology and Population Aging. Springer, Cham. https://doi.org/10.1007/978-3-030-22009-9_1037
Download citation
DOI: https://doi.org/10.1007/978-3-030-22009-9_1037
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22008-2
Online ISBN: 978-3-030-22009-9
eBook Packages: Social SciencesReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences