Encyclopedia of Molecular Pharmacology

Living Edition
| Editors: Stefan Offermanns, Walter Rosenthal

Alzheimer’s Disease

  • Gerhard MulthaupEmail author
  • Filip Liebsch
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-21573-6_262-1



Alzheimer’s disease (AD), named after the psychiatrist and neuropathologist Alois Alzheimer, is an age-associated, chronic, and progressive neurodegenerative illness and the most common cause of neurocognitive disorder (dementia) in the elderly. AD is characterized by a disease duration of two to four decades, starting with 10–20 years of biochemical, cellular, and neurodegenerative changes in the brain (the preclinical or pre-symptomatic phase). In this initial stage, neuropathological changes appear in the brain, such as extracellular amyloid plaque deposits, intraneuronal neurofibrillary tangles, and brain atrophy. This stage is followed by at first subtle but not debilitating cognitive symptoms, finally leading into a progressive worsening and impairment of executive functions (the clinical or symptomatic phase), which makes an unassisted life impossible (Aisen et al. 2017). Age is the...

This is a preview of subscription content, log in to check access.


  1. Aisen PS, Cummings J, Jack CR Jr, Morris JC, Sperling R, Frolich L, Jones RW, Dowsett SA, Matthews BR, Raskin J, Scheltens P, Dubois B (2017) On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimers Res Ther 9(1):60.  https://doi.org/10.1186/s13195-017-0283-5CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barao S, Moechars D, Lichtenthaler SF, De Strooper B (2016) BACE1 physiological functions may limit its use as therapeutic target for Alzheimer’s disease. Trends Neurosci 39(3):158–169.  https://doi.org/10.1016/j.tins.2016.01.003CrossRefPubMedGoogle Scholar
  3. Bates KA, Verdile G, Li QX, Ames D, Hudson P, Masters CL, Martins RN (2009) Clearance mechanisms of Alzheimer’s amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry 14(5):469–486.  https://doi.org/10.1038/mp.2008.96CrossRefPubMedGoogle Scholar
  4. Bohm C, Chen F, Sevalle J, Qamar S, Dodd R, Li Y, Schmitt-Ulms G, Fraser PE, St George-Hyslop PH (2015) Current and future implications of basic and translational research on amyloid-beta peptide production and removal pathways. Mol Cell Neurosci 66(Pt A):3–11.  https://doi.org/10.1016/j.mcn.2015.02.016CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bursavich MG, Harrison BA, Blain JF (2016) Gamma secretase modulators: new Alzheimer’s drugs on the horizon? J Med Chem 59(16):7389–7409.  https://doi.org/10.1021/acs.jmedchem.5b01960CrossRefPubMedGoogle Scholar
  6. Collaborators GBDD (2019) Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(1):88–106.  https://doi.org/10.1016/S1474-4422(18)30403-4CrossRefGoogle Scholar
  7. De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164(4):603–615.  https://doi.org/10.1016/j.cell.2015.12.056CrossRefPubMedGoogle Scholar
  8. De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6(2):99–107.  https://doi.org/10.1038/nrneurol.2009.218CrossRefPubMedPubMedCentralGoogle Scholar
  9. Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27(4):570–575.  https://doi.org/10.1016/j.neurobiolaging.2005.04.017CrossRefPubMedGoogle Scholar
  10. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356.  https://doi.org/10.1126/science.1072994CrossRefPubMedGoogle Scholar
  11. Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, Nordberg A (2019) Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry 24(8):1112–1134.  https://doi.org/10.1038/s41380-018-0342-8CrossRefPubMedPubMedCentralGoogle Scholar
  12. Liebsch F, Kulic L, Teunissen C, Shobo A, Ulku I, Engelschalt V, Hancock MA, van der Flier WM, Kunach P, Rosa-Neto P, Scheltens P, Poirier J, Saftig P, Bateman RJ, Breitner J, Hock C, Multhaup G (2019) Abeta34 is a BACE1-derived degradation intermediate associated with amyloid clearance and Alzheimer’s disease progression. Nat Commun 10(1):2240.  https://doi.org/10.1038/s41467-019-10152-wCrossRefPubMedPubMedCentralGoogle Scholar
  13. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, Ballard C, Banerjee S, Burns A, Cohen-Mansfield J, Cooper C, Fox N, Gitlin LN, Howard R, Kales HC, Larson EB, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbaek G, Teri L, Mukadam N (2017) Dementia prevention, intervention, and care. Lancet 390(10113):2673–2734.  https://doi.org/10.1016/S0140-6736(17)31363-6CrossRefPubMedGoogle Scholar
  14. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Primers 1:15056.  https://doi.org/10.1038/nrdp.2015.56CrossRefPubMedGoogle Scholar
  15. Mehta M, Adem A, Sabbagh M (2012) New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimers Dis 2012:728983.  https://doi.org/10.1155/2012/728983CrossRefPubMedGoogle Scholar
  16. Mo JJ, Li JY, Yang Z, Liu Z, Feng JS (2017) Efficacy and safety of anti-amyloid-beta immunotherapy for Alzheimer’s disease: a systematic review and network meta-analysis. Ann Clin Transl Neurol 4(12):931–942.  https://doi.org/10.1002/acn3.469CrossRefPubMedPubMedCentralGoogle Scholar
  17. Munter LM, Voigt P, Harmeier A, Kaden D, Gottschalk KE, Weise C, Pipkorn R, Schaefer M, Langosch D, Multhaup G (2007) GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42. EMBO J 26(6):1702–1712.  https://doi.org/10.1038/sj.emboj.7601616CrossRefPubMedPubMedCentralGoogle Scholar
  18. Olsson F, Schmidt S, Althoff V, Munter LM, Jin S, Rosqvist S, Lendahl U, Multhaup G, Lundkvist J (2014) Characterization of intermediate steps in amyloid beta (Abeta) production under near-native conditions. J Biol Chem 289(3):1540–1550.  https://doi.org/10.1074/jbc.M113.498246CrossRefPubMedGoogle Scholar
  19. Van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2016) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18(5):421–430.  https://doi.org/10.1038/gim.2015.117CrossRefPubMedGoogle Scholar
  20. van Marum RJ (2009) Update on the use of memantine in Alzheimer’s disease. Neuropsychiatr Dis Treat 5:237–247.  https://doi.org/10.2147/ndt.s4048CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2020

Authors and Affiliations

  1. 1.Department of Pharmacology and TherapeuticsMcGill UniversityMontrealCanada
  2. 2.Institute of BiochemistryUniversity of CologneCologneGermany