Skip to main content

Diagrammatic Proofs in Mathematics: (Almost) 20 Years of Research

  • Living reference work entry
  • First Online:
Handbook of the History and Philosophy of Mathematical Practice

Abstract

The objective of this chapter is to introduce some of the views that have been put forward in almost 20 years of research on diagrammatic proofs in the philosophy of mathematical practice. In Sect. 1, some contextual elements will be presented on the reasons why diagrammatic proofs have attracted so much philosophical attention in the past years. In Sect. 2, the “first wave” in the research on diagrammatic proofs based on the analysis of case studies will be described: this is how it started. In Sect. 3, the “second wave,” which is calling for “big pictures” and divides into two different strategies, will be discussed: this is where it is going. In Sect. 4, some conclusions will be drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allwein G, Barwise J (eds) (1996) Logical reasoning with diagrams. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Azzouni J (2004) The derivation-indicator view of mathematical practice. Philosophia Mathematica (III) 12:81–105

    Article  MathSciNet  MATH  Google Scholar 

  • Azzouni J (2005) Is there still a sense in which mathematics can have foundations? Essays on the Foundations of Mathematics and Logic 1:9–48

    MATH  Google Scholar 

  • Barwise J, Etchemendy J, (1996) Heterogeneous logic. In Gerard Allwein & Jon Barwise (eds.) (1996), pp. 3–25

    Google Scholar 

  • Brown JR (1999) Philosophy of mathematics: an introduction to the world of proofs and pictures. Routledge, New York

    MATH  Google Scholar 

  • Burgess JP (2015) Rigor and structure. Oxford University Press

    Book  MATH  Google Scholar 

  • Burgess JP, De Toffoli S (2022) What is mathematical rigor? Aphex 25:1–17

    Google Scholar 

  • Carter J (2010) Diagrams and proofs in analysis. Int Stud Philos Sci 24(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Carter J (2018) Graph-algebras – faithful representations and mediating objects in mathematics. Endeavour

    Google Scholar 

  • Carter J (2019a) Philosophy of mathematical practice – motivations, themes and prospects. Philos Math:1–32

    Google Scholar 

  • Carter J (2019b) Exploring the fruitfulness of diagrams in mathematics. Synthese

    Google Scholar 

  • Carter J (2021) “Free rides” in Mathematics. Synthese 199:10475–10498

    Article  MathSciNet  Google Scholar 

  • Chemla K (2005) The interplay between proof and algorithm in 3rd century China: the operation as prescription of computation and the operation as argument. In Mancosu et al. (eds) (2005), pp. 123–145

    Google Scholar 

  • De Toffoli S (2017) ‘Chasing’ the diagram – the use of visualizations in algebraic reasoning. The Review of Symbolic Logic 10(1):158–186

    Article  MathSciNet  MATH  Google Scholar 

  • De Toffoli S (2021) Reconciling rigor and intuition. Erkenntnis 86:1783–1802

    Article  MathSciNet  Google Scholar 

  • De Toffoli S (2022) What are mathematical diagrams? Synthese 200(86):1–29

    MathSciNet  Google Scholar 

  • De Toffoli S (2023) Who’s afraid of mathematical diagrams? Philosophers’ Imprint 23(1):1–20

    Google Scholar 

  • De Toffoli S, Giardino V (2015) An inquiry into the practice of proving in low-dimensional topology. Boston Studies in the Philosophy and History of Science 308:315–336

    Article  MathSciNet  MATH  Google Scholar 

  • De Toffoli S, Giardino V (2014) Forms and roles of diagrams in knot theory. Erkenntnis 79(3):829–842

    Article  MathSciNet  MATH  Google Scholar 

  • Dutilh Novaes C (2012) Formal languages in logic: a philosophical and cognitive analysis. Cambridge University Press

    Book  MATH  Google Scholar 

  • Giaquinto M (2007/2011) Visual thinking in mathematics: an epistemological study. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Giaquinto M (Spring 2020 Edition) The epistemology of visual thinking in mathematics. In: Zalta EN (ed) The Stanford encyclopedia of philosophy. https://plato.stanford.edu/archives/spr2020/entries/epistemology-visual-thinking

  • Giardino V (2017a) The practical turn in philosophy of mathematics: a portrait of a young discipline. Phenomenology and Mind 12:18–28

    Google Scholar 

  • Giardino V (2017b) Diagrammatic reasoning in mathematics. In: Magnani L, Bertolotti T (eds) Spinger handbook of model-based science, pp 499–522

    Chapter  Google Scholar 

  • Giardino V (2018a) Tools for thought: the case of mathematics. Endeavour 42:172–179

    Article  Google Scholar 

  • Giardino V (2018b) Manipulative imagination: how to move things around in mathematics. Theoria 33(2):345–360

    Article  MATH  Google Scholar 

  • Giardino V, Wöpking J (2019) Aspect seeing and mathematical representations. Avant X(2/2019)

    Google Scholar 

  • Grosholz E (2007) Representation and productive ambiguity in mathematics and the sciences. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Grosholz E (2011) Logic, mathematics, heterogeneity. In: Ippoliti E, Cellucci C, Grosholz E (eds) Logic and knowledge. Cambridge Scholars Press, pp 291–300

    Google Scholar 

  • Haffner E (forthcoming) Duality as a guiding light in the genesis of Dedekind’s Dualgruppen. In: Krömer R, Haffner E (eds) Duality in 19th and 20th century mathematical thinking. Birkhäuser, Basel

    Google Scholar 

  • Halimi B (2012) Diagrams as sketches. Synthese 186:387–409

    Article  MathSciNet  MATH  Google Scholar 

  • Hamami Y (2022) Mathematical rigor and proof. The Review of Symbolic Logic 15(2):409–449

    Article  MathSciNet  MATH  Google Scholar 

  • Hamami Y, Morris RL (2020) Philosophy of mathematical practice: a primer for mathematics educators. ZDM 52:1113–1126

    Article  Google Scholar 

  • Hamami Y, Morris RL (2021) Plans and planning in mathematical proofs. The Review of Symbolic Logic 14(4):1030–1065

    Article  MathSciNet  MATH  Google Scholar 

  • Hamami Y, Mumma J (2013) Prolegomena to a cognitive investigation of Euclidean diagrammatic reasoning. Journal of Logic Language and Information 22(4):421–448

    Article  MathSciNet  MATH  Google Scholar 

  • Hamami Y, Mumma J, Amalric M (2021) Counterexample search in diagram-based geometric reasoning. Cogn Sci 45(4):1–25

    Article  Google Scholar 

  • Høyrup J (2005) Tertium non Datur: on reasoning styles in early mathematics. In: Mancosu et al. (eds) (2005), pp. 91–121

    Google Scholar 

  • Hutchins E (2005) Material anchors for conceptual blends. J Pragmat 37:1555–1577

    Article  Google Scholar 

  • Larvor B (2012) How to think about informal proofs. Synthese 187:715–730

    Article  MathSciNet  MATH  Google Scholar 

  • Macbeth D (2012) Seeing how it goes: paper-and-pencil reasoning in mathematical practice. Philos Math 20(1):58–85

    Article  MathSciNet  MATH  Google Scholar 

  • Macbeth D (2014) Realising reason. A narrative of truth & knowing. Oxford University Press, Oxford

    Book  Google Scholar 

  • Mancosu P (ed) (2008) The philosophy of mathematical practice. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Mancosu P, Jørgensen KF, Pedersen SA (eds) (2005) Visualization, explanation and reasoning styles in mathematics. Springer, Berlin

    MATH  Google Scholar 

  • Manders K (1995/2008) The Euclidean diagram. In: Mancosu P (ed), pp. 80–133

    Google Scholar 

  • Nelsen R (1997) Proofs without words: exercises in visual thinking, classroom resource materials. The Mathematical Association of America, Washington 1997

    Google Scholar 

  • Nelsen R (2001) Proofs without words II: more exercises in visual thinking, classroom resource materials. The Mathematical Association of America, Washington

    Google Scholar 

  • Nelsen R (2015) Proofs without words III: further exercises in visual thinking, classroom resource materials. The Mathematical Association of America, Washington

    Book  Google Scholar 

  • Netz R (1999) The shaping of deduction in Greek mathematics: a study of cognitive history. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Pasch M (1882) Vorlesungen über neuere Geometrie. Springer, Berlin. 1926, 1976 (with introduction by Max Dehn)

    MATH  Google Scholar 

  • Rabouin D (2018) Logic of imagination. Echoes of Cartesian epistemology in contemporary philosophy of mathematics and beyond. Synthese 195(4):4751–4783

    Article  MathSciNet  MATH  Google Scholar 

  • Russell B (1901) Recent work on the principles of mathematics. International Monthly 4:83–101. Reprinted as “mathematics and the metaphysicians” in mysticism and logic, George Allen and Unwin, London 1918

    Google Scholar 

  • Shimojima A (2015) Semantic properties of diagrams and their cognitive potentials. CSLI Publications, Stanford

    Google Scholar 

  • Shin S-J (1995) The logical status of diagrams. Cambridge University Press, Cambridge, NY/Oakleigh

    Book  MATH  Google Scholar 

  • Starikova I (2010) Why do mathematicians need different ways of presenting mathematical objects? The case of Cayley graphs. Topoi 29:41–51

    Article  MathSciNet  MATH  Google Scholar 

  • Stenning K (2002) Seeing reason: image and language in learning to think. Oxford University Press, Oxford

    Book  Google Scholar 

  • Tanswell F (forthcoming) Go forth and multiply: on actions, instructions and imperatives in mathematical proofs. In: Bueno O, Brown J (eds) Essays on the work of Jody Azzouni

    Google Scholar 

  • Tanswell F (2017) Playing with LEGO and proving theorems. In: Cook RT, Bacharach S (eds) LEGO and philosophy: constructing reality brick by brick. Wiley Blackwell, Oxford, pp 217–226

    Chapter  Google Scholar 

  • Tennant D (1986) The withering away of formal semantics? Mind and Language 1:302–318

    Article  Google Scholar 

  • van Bendegem JP (1993) Real-life mathematics versus ideal mathematics: the ugly truth. In: Krabbe ECW, Dalitz RJ, Smit PA (eds) Empirical logic and public debate, essays in honour of Else M. Barth. Rowman & Littlefield, Lanham, pp 263–272

    Chapter  Google Scholar 

  • Weber K, Tanswell F (2022) Instructions and recipes in mathematical proofs. Educ Stud Math 111:73–87

    Article  Google Scholar 

  • Weber Z (2013) Figures, formulae, and functors. In: Moktefi A, Shin S-J (eds) Visual reasoning with diagrams, ed. Studies in universal logic. Springer, Basel, pp 153–170

    Google Scholar 

Download references

Acknowledgments

I thank Joachim Frans, Bart van Kerkhove, and Bharath Sriraman for their editorial work and Silvia De Toffoli, Dirk Schlimm, and Fenner Tanswell for having commented on a previous version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Giardino .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Giardino, V. (2023). Diagrammatic Proofs in Mathematics: (Almost) 20 Years of Research. In: Sriraman, B. (eds) Handbook of the History and Philosophy of Mathematical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-19071-2_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19071-2_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19071-2

  • Online ISBN: 978-3-030-19071-2

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics