Skip to main content

One Mathematic(s) or Many? Foundations of Mathematics in 20th Century Mathematical Practice

  • Living reference work entry
  • First Online:
Handbook of the History and Philosophy of Mathematical Practice

Abstract

The received Hilbert-style axiomatic foundations of mathematics has been designed by Hilbert and his followers as a tool for metatheoretical research. Foundations of mathematics of this type fail to satisfactory perform more basic and more practically oriented functions of theoretical foundations such as verification of mathematical constructions and proofs. Using alternative foundations of mathematics such as the univalent foundations is compatible with using the received set-theoretic foundations for metamathematical purposes provided the two foundations are mutually interpretable. Changes in foundations of mathematics do not, generally, disqualify mathematical theories based on older foundations but allow for reconstruction of these theories on new foundations. Mathematics is one but its foundations are many.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ahrens B, North P (2019) Univalent foundations and equivalence principle. In: Centrone S, Kant D, Sarikaya D (eds) Reflections on the foundations of mathematics: univalent foundations, set theory and general thoughts, vol 407. Springer, Synthese Library, pp 137–150

    Chapter  Google Scholar 

  • Arnauld A (1683) Nouveaux Eléments de Géométrie. Guillaume Desprez, Paris

    Google Scholar 

  • Arnold VI (1998) On mathematical teaching (in Russian). Russ Math Surv 53(1):229–236

    Article  Google Scholar 

  • Artemov SN (2020) The provability of consistency. https://arxiv.org/abs/1902.07404

  • Avigad J (2018) al. Introduction to ‘Milestones in interactive theorem proving’. J Autom Reason 61(1):1–8

    Article  MATH  Google Scholar 

  • Baulieu L (1994) Dispelling a myth: questions and answers about Bourbaki’s early work, 1934–1944. In: Chikara S, Mitsuo S, Dauben JW (eds) The intersection of history and mathematics. Birkhäuser, Basel, pp 241–252

    Chapter  Google Scholar 

  • Bezem M, Coquand T, Huber S (2019) The univalence axiom in cubical sets. J Autom Reasoning 63:159–171. https://doi.org/10.1007/s10817-018-9472-6

  • Bird A (2007) What is scientific progress? Noûs 41(1):64–89

    Article  Google Scholar 

  • Bourbaki N (1939) Eléments de Mathématique. Théorie des Ensembles. Hermann, Paris

    Google Scholar 

  • Bourbaki N (1950) Architecture of mathematics. Am Math Mon 57(4):221–232

    Article  MathSciNet  MATH  Google Scholar 

  • Bourbaki N (2016) Eléments de Mathématique: Topologie Algébrique, ch. 1–4. Springer

    Google Scholar 

  • Bradley Bassler O (2006) The surveyability of mathematical proof: a historical perspective. Synthese 148(1):99–133

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll L (1895) What the Tortoise Said to Achilles. Mind 4(14):278–280

    Google Scholar 

  • Corry L (2004) Modern algebra and the rise of mathematical structures. Birkhäusert

    Google Scholar 

  • Detlefsen M (1990) On an alleged refutation of Hilbert’s program using Gödel’s first incompleteness theorem. J Philos Log 19(4):343–377

    Article  MathSciNet  MATH  Google Scholar 

  • Eilenberg S, Cartan H (1956) Homological algebra. Princeton University Press, Princeton

    Google Scholar 

  • Eilenberg S, MacLane S (1945) General theory of natural equivalences. Trans Am Math Soc 58(2):231–294

    Article  MathSciNet  MATH  Google Scholar 

  • Eilenberg S, Steenrod N (1952) Foundations of algebraic topology. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Ferreiros J (2005) Dogmas and the changing images of foundations. Philos Sci CS(5):27–42

    Google Scholar 

  • Feynman R (1965) New textbooks for the ‘new’ mathematics. Eng Sci 28(6):9–15

    Google Scholar 

  • Friend M (2014) Pluralism in mathematics: a new position in philosophy of mathematics. Springer, Dordrecht

    Google Scholar 

  • Gaskin R (2009) The unity of proposition. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Giraud J (1972) Classifying topos. In: Lawvere FW (ed) Toposes, algebraic geometry and logic (volume 274 of Lecture notes in mathematics). Springer, 2, pp 43–56

    Google Scholar 

  • Grayson D (2018) An introduction of univalent foundations for mathematicians. Bull Am Math Soc (New Series) 55(4):427–450

    Article  MathSciNet  MATH  Google Scholar 

  • Grimm J (2010) Implementation of Bourbaki’s elements of mathematics in coq: part one, theory of sets. J Formalized Reason 3(1):79–126

    MathSciNet  MATH  Google Scholar 

  • Halsted GB (1904) Rational geometry: a text-book for the science of space; based on Hilbert’s foundations. Wiley, New York

    MATH  Google Scholar 

  • Halvorson H (2016) Scientific Theories. In: Humphreys P (ed) The Oxford Handbook of philosophy of science. Oxford University Press, Oxford

    Google Scholar 

  • Hellman G (2006) Structuralism, mathematical. In: Borchert DM (ed) Encyclopedia of philosophy, vol 9, 2nd edn. Macmillan, New York, NY, pp 270–273

    Google Scholar 

  • Hilbert D (1899) Grundlagen der Geometrie. Teubner, Leipzig

    Google Scholar 

  • Hilbert D(1967) Foundations of mathematics. In: van Heijenoort J (ed) From Frege to Gödel: a source book in the mathematical logic, vol 2. Harvard University Press, Cambridge, Mass. pp 464–480

    Google Scholar 

  • Hilbert D, Bernays P (1934–1939) Grundlagen der Mathematik. Springer, Berlin

    Google Scholar 

  • Kleene SC (2009) Introduction to Metamathematics. Ishi Press International, San Jose, California

    Google Scholar 

  • Kline M (1973) Why Johnny can’t add: the failure of new Maths. St James Press, New York/London

    Google Scholar 

  • Krieger MH (2015) Doing Mathematics: convention, subject, calculation, analogy. World Scientific Publishing Company, Singapore

    Google Scholar 

  • Kromer R (2007) Tool and object: a history and philosophy of category theory. Birkhäuser, Berlin

    Google Scholar 

  • Lawvere FW (1963) Functorial semantics of algebraic theories. PhD thesis, Columbia University

    Google Scholar 

  • Lawvere FW (1966) The category of categories as a foundation for mathematics. In: Proceedings of the La Jolla conference on categorical algebra, pp 1–21

    Google Scholar 

  • Lawvere FW (1970) Quantifiers and sheaves. In: Berger M, Dieudonne J, et al (eds) Actes du congres international des mathematiciens, Nice, pp 329–334

    Google Scholar 

  • Lawvere FW (2005) An elementary theory of the category of sets (long version) with the author’s commentary. Reprints in Theory and Applications of Categories 11:1–35

    Google Scholar 

  • Lawvere FW, Rosebrugh R (2003) Sets for mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • MacLane S (1996) Structure in mathematics. Philos Math 4(2):174–183

    Article  MathSciNet  Google Scholar 

  • Mancosu P et al (2008) Philosophy of mathematical practice. Oxford University Press

    Book  MATH  Google Scholar 

  • Manin Y (2002) Georg Cantor and his heritage (talk at the meeting of the German mathematical society and the Cantor medal award ceremony). arXiv:math.AG/02009244 v1/

    Google Scholar 

  • Marquis J-P (2009) From a geometrical point of view: a study of the history and philosophy of category theory. Springer, Dordrecht

    Google Scholar 

  • McCarty DC (2005) Problems and riddles: Hilbert and the Du Bois-Reymonds. Synthese 147:63–79

    Article  MathSciNet  MATH  Google Scholar 

  • McLarty C (1992) Elementary categories, elementary Toposes. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Müller I (1969) Euclid’s elements and the axiomatic method. Br J Philos Sci 20:289–309

    Article  MathSciNet  MATH  Google Scholar 

  • Müller I (1974) Greek mathematics and Greek logic. Ancient logic and its modern interpretations. Synthese Historical Library, vol 9. pp 35–70

    Google Scholar 

  • Pastin M (1979) The need for epistemology: problematic realism defended. In: Pappas GS (ed) Justification and knowledge. New studies in epistemology. D. Reidel Publishing Company, Dordrecht, pp 151–168

    Google Scholar 

  • Patania A, Vaccarino F, Petri G (2017) Topological analysis of data. EPJ Data Sci 6(7). https://doi.org/10.1140/epjds/s13688-017-0104-x

  • Phillips CJ (2015) New math: a political history. The University of Chicago Press, Chicago

    Google Scholar 

  • Piecha T, Shroeder-Heister P (eds) (2015) Advances in proof-theoretic semantics. Trends in logic, vol 43. Springer

    Google Scholar 

  • Prawitz D (1986) Philosophical aspects of proof theory. G. Fløistad, La philosophie contemporaine. Chroniques nouvelles, Philosophie du langage 1:235–278

    Google Scholar 

  • Quillen D (1967) Homotopical algebra. Lecture notes in mathematics, no. 43. Springer, New York, NY

    Google Scholar 

  • Rashed R (2010) Al-Kwarizmi: The Beginning of algebra: History of Science and Philosophy in Classical Islam; London: Saqi Books

    Google Scholar 

  • Rodin A (2014) Axiomatic method and category theory. Synthese library, vol 364. Springer, Dordrecht

    Google Scholar 

  • Rodin A (2018) On constructive axiomatic method. Logique et Analyse 61(242):201–231

    MathSciNet  MATH  Google Scholar 

  • Rodin A (2021) Voevodsky’s unfinished project: Filling the gap between pure and applied mathematics. Biosystems vol. 204, 104391

    Google Scholar 

  • Stegmüller W (1979) The Structuralist view of Theories: a possible analogue of the Bourbaki Programme in physical science. Springer, Berlin

    Google Scholar 

  • Stone M (1961) Revolution in mathematics. Am Math Mon 68(8):715–734

    Article  MathSciNet  MATH  Google Scholar 

  • Suppes P (2002) Representation and invariance of scientific structures. CSLI Publications, Stanford

    MATH  Google Scholar 

  • Tarski A (1941) Introduction to logic and to the methodology of deductive sciences. Oxford University Press, New York

    MATH  Google Scholar 

  • Taylor P (1999) Practical foundations of mathematics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Univalent Foundations Group (2013) Homotopy type theory: univalent foundations of mathematics. Institute for Advanced Study (Princeton). Available at http://homotopytypetheory.org/book/

  • Vilenkin NYa, Boltyansky VG, Yaglom IM (1959) On the content of school mathematical curriculum (in Russian). Matematicheskoe Prosveschenie (Mathematical enlightement) 4:131–143

    Google Scholar 

  • Voevodsky VA (2006) Foundations of mathematics and homotopy theory (lecture delivered at the Princeton Institute of Advanced Studies on march 22, 2006). https://www.math.ias.edu/vladimir/Lectures

  • Zach R (2003) Hilbert’s program. Stanford encyclopedia of philosophy

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Rodin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rodin, A. (2021). One Mathematic(s) or Many? Foundations of Mathematics in 20th Century Mathematical Practice. In: Sriraman, B. (eds) Handbook of the History and Philosophy of Mathematical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-19071-2_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19071-2_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19071-2

  • Online ISBN: 978-3-030-19071-2

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics