Abstract
Lipids and oils are produced by all single-cell organisms for essential structural and functional roles; however, the term single cell oils (SCOs) is mainly restricted to describe the lipids produced by a limited number of oleaginous microorganisms (archaea, bacteria, yeast, fungi, and microalgae) with oil contents higher than 20% of biomass weigh. SCOs have different fatty acid compositions from those of plant seed or fish oils and are nowadays considered as new sources of nutraceuticals and animal feeds. In spite of the current commercial success of some SCOs, the development of more efficient microbial fermentation processes, and the possibility of manipulating by systems metabolic engineering, the lipid composition of cells requires new biotechnological strategies to obtain high yields of the desired SCOs. Understanding the synthesis and regulatory mechanisms involved in the production of SCOs is fundamental to eliminate the metabolic bottlenecks that impair achieving high oil yields.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adeyo O, Horn PJ, Lee S, Binns DD, Chandrahas A, Chapman KD, Goodman JM (2011) The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 192:1043–1055
Akao T, Kusaka T (1976) Solubilization of diglyceride acyltransferase from the membrane of Mycobacterium smegmatis. J Biochem 80:723–728
Aki T, Nagahata Y, Ishihara K et al (2001) Production of arachidonic acid by filamentous fungus, Mortierella alliacea strain YN-15. J Amer Oil Chem Soc 78:599
Altabe SG, Aguilar P, Caballero GM, de Mendoza D (2003) The Bacillus subtilis acyl lipid desaturase is a delta5 desaturase. J Bacteriol 185:3228–3231
Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376
Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386
Alvarez HM, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223
Alvarez HM, Souto MF, Viale A, Pucci OH (2001) Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. FEMS Micribiol 200:195–200
Alvarez HM, Silva RA, Herrero M, Hernández MH, Villalba MS (2013) Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics. J Mol Biochem 2:69–78
Amara S, Seghezzi N, Otani H, Diaz-Salazar C, Liu J, Eltis LD (2016) Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci Rep 6:24985
Arao T, Yamada M (1994) Biosynthesis of polyunsaturated fatty acids in the marine diatom, Phaeodactylum tricornutum. Phytochemistry 35:1177–1181
Athenstaedt K, Weys S, Paltauf F, Daum G (1999) Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae. J Bacteriol 181:1458–1463
Bacchin P, Robertiello A, Viglia A (1974) Identification of n-decane oxidation products in Corynebacterium cultures by combined gas chromatography-mass spectrometry. Appl Microbiol 28:737–741
Banas W, Sanchez Garcia A, Banas A, Stymne S (2013) Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds. Planta 237:1627–1636
Barksdale L, Kim KS (1977) Mycobacterium. Bacteriol Rev 41:217–372
Bartz R, Zehmer JK, Zhu M, Chen Y, Serrero G, Zhao Y, Liu P (2007) Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Prot Res 6:3256–3265
Beacham TA, Ali ST (2016) Growth dependent silencing and resetting of DGA1 transgene in Nannochloropsis salina. Algal Res 14:65–71
Béligon V, Christophe G, Fontanille P, Larroche C (2016) Microbial lipids as potencial source to food supplements. Curr Opin Food Sci 7:35–42
Bellou S, Moustogianni A, Makri A et al (2012) Lipids containing polyunsaturated fatty acids synthesized by Zygomycetes grown on glycerol. Appl Biochem Biotechnol 166:146–158
Bellou S, Aggelis G (2013) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. Journal of biotechnology 164(2):318–329
Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493
Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35
Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74:7779–7789
Beopoulos A, Haddouche R, Kabran P, Dulermo T, Chardot T, Nicaud JM (2012) Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts. Appl Microbiol Biotechnol 93:1523–1537
Bharathiraja B, Sridharan S, Sowmya V, Yuvaraj D, Praveenkumar R (2017) Microbial oil – a plausible alternate resource for food and fuel application. Bioresour Technol 233:423–432
Blaby IK, Glaesener AG et al (2013) Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25:4305–4323
Boswell KDB, Gladue R, Prima B, Kyle DJ (1992) SCO production by fermentative microalgae. In: Kyle DJ, Ratledge C (eds) Industrial applications of single cell oils. AOCS Press, Champaign, pp 274–286
Boyle NR, Page MD et al (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825
Bozaquel-Morais BL, Madeira JB, Maya-Monteiro CM, Masuda CA, Montero-Lomeli M (2010) A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism. PLoS One 5:e13692
Bredemeier R, Hulsch R, Metzger JO, Berthe-Corti L (2003) Submersed culture production of extracellular wax esters by the marine bacterium Fundibacter jadensis. Mar Biotechnol 5:579–583
Bredeweg EL, Pomraning KR, Dai Z, Nielsen J, Kerkhoven EJ, Baker SE (2017) A molecular genetic toolbox for Yarrowia lipolytica. Biotechnol Biofuels 10:2
Breuer G, de Jaeger L, Artus VPG, Martens DE, Springer J, Draaisma RB, Eggink G, Wijffels RH, Lamers PP (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors. Biotechnol Biofuels 7:70
Bryn K, Jantzen E, Bovre K (1977) Occurrence and patterns of waxes in Neisseriaceae. J Gen Microbiol 102:33–43
Cao Y, Cheng T, Zhao G, Niu W, Guo J, Xian M, Liu H (2016) Metabolic engineering of Escherichia coli for the production of hydroxy fatty acids from glucose. BMC Biotechnol 16:26
Carman GM, Han GS (2009) Regulation of phospholipid synthesis in yeast. J Lipid Res 50(Suppl):S69–S73
Chang RL, Ghamsari L, Manichaikul A, Hom EF, Balaji S, Fu W, Shen Y, Hao T, Palsson BØ, Salehi-Ashtiani K, Papin JA (2011) Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol 7:518
Chauton MS, Kjell IR, Niels HN, Ragnar T, Hans TK (2015) A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture 436:95–103
Chen JW, Liu WJ, Hu DX, Wang X, Balamurugan S, Alimujiang A, Yang WD, Liu JS, Li HY (2017) Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica. Biotechnol Appl Biochem 64:620–626
Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545
Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306
Choudhary V, Jacquier N, Schneiter R (2011) The topology of the triacylglycerol synthesizing enzyme Lro1 indicates that neutral lipids can be produced within the luminal compartment of the endoplasmatic reticulum: implications for the biogenesis of lipid droplets. Comm Int Biol 4:781–784
Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Meth Enzymol 459:395–433
Cultrone A, Scazzocchio C, Rochet M, Montero-Morán G, Drevet C, Fernández-Martín R (2005) Convergent evolution of hydroxylation mechanisms in the fungal kingdom: molybdenum cofactor-independent hydroxylation of xanthine via alpha-ketoglutarate-dependent dioxygenases. Mol Microbiol 57:276–290
Dal’Molin CG, Quek LE, Palfreyman RW, Nielsen LK (2011) AlgaGEM – a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genomics 12:S5
Damude HG, Gillies PJ, Macool DJ, Picatoaggio SK, Pollak DMW, Ragghianti JJ, Xue Z, Yadav NS, Zhang H, Zhu QQ (2011) High eicosapaentaenoic acid producing strains of Yarrowia lipolytica. US Patent 7,932,077 B2
de Jaeger L, Verbeek RE, Draaisma RB, Martens DE, Springer J, Eggink G, Wijffels RH (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels 7:69
de Lorenzo V, Galperin M (2009) Microbial systems biology: bottom up and top down. FEMS Microbiol Rev 33:1–2
De Swaaf M, Pronk JT, Sijtsma L (2003a) Fed-batch cultivation of docosahexaenoic-acid-producing marine alga Crypthecodinium cohniion ethanol. Appl Microbiol Biotechnol 61:40–43
De Swaaf M, Sijtsma L, Pronk JT (2003b) High-cell-density fed-batch cultivation of the docosahexaenoic acid production marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672
Delong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737
Desbois AP, Lawlor KC (2013) Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar Drugs 11:4544–4557
Dewitt S, Ervin JL, Howes-Orchison D, Dalietos D, Neidleman SL, Geigert J (1982) Saturated and unsaturated wax esters produced by Acinetobacter sp. HO1-N grown on C16-C20 n-alkanes. J Am Oil Chem Chem Soc 59:69–74
Dong HP, Williams E, Wang DZ, Xie ZX, Hsia RC, Jenck A, Halden R, Li J, Chen F, Place AR (2013) Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol 162:1110–1126
Dujon B, Sherman D et al (2004) Genome evolution in yeasts. Nature 430:35–44
Dulermo T, Nicaud JM (2011) Involvement of the G3P shuttle and beta-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13:482–491
Eggers J, Steinbuchel A (2014) Impact of Ralstonia eutropha’s poly(3-Hydroxybutyrate) (PHB) depolymerases and phasins on PHB storage in recombinant Escherichia coli. Appl Environ Microbiol 80:7702–7709
Eroshin VK, Satroutdinov AD, Dedyukhina EG, Christyakova TI (2000) Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Process Biochem 35:1171–1175
Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G (2009) Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour Technol 100:6118–6120
Fan J, Andre C, Xu C (2011) A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Let 585:1985–1991
FAO (2014) The state of world fisheries and aquaculture 2014. FAO, Rome
Fickers P, Benetti PH, Waché Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543
Finco AMO, Mamani LDG, Carvalho JC, de Melo Pereira GV, Thomaz-Soccol V, Soccol CR (2017) Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit Rev Biotechnol 37:656–671
Fixter LM, Fewson CA (1974) The accumulation of waxes by Acinetobacter calcoaceticus NCIB-8250. Biochem Soc Trans 2:944–945
Fixter LM, McCormack JG (1976) The effect of growth conditions on the wax content of various strains of Acinetobacter. Biochem Soc Trans 4:504–505
FMI (2016) Market Research Report Polyunsaturated Fatty Acids (PUFAs) Market: Rising Demand for Omega-3 and Omega-6 Fatty Acids Fuelling Market Growth: Global Industry Analysis & Opportunity Assessment, 2018–2023
Friedlander J, Tsakraklides V et al (2016) Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels 9:77
Gallagher IH (1971) Occurrence of waxes in Acinetobacter. J Gen Microbiol 68:245–247
Ganuza E, Izquierdo MS (2007) Lipid accumulation in Schizochytrium G13/2S produced in continuous culture. Appl Microbiol Biotechnol 76:985–990
Garay LA, Boundy-Mills KL, German JB (2014) Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. J Agric Food Chem 62:2709–2727
Gong Y, Wan X, Jiang M, Hu C, Hu H, Huang F (2014) Metabolic engineering of microorganisms to produce omega-3 very long-chain polyunsaturated fatty acids. Prog Lipid Res 56:19–35
Goodson C, Roth R, Wang ZT, Goodenough U (2011) Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell 10:1592–1606
Grage K, Jahns AC, Parlane N, Palanisamy R, Rasiah IA, Atwood JA, Rehm BH (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano−/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10:660–669
Grand View Research (2014) Omega 3 market analysis and segment forecasts to 2020, pp 1–34. Available from: http://www.grandviewresearch.com
Griffiths MJ, van Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001
Guchhait RB, Polakis SE, Dimroth P, Stoll E, Moss J, Lane MD (1974) Acetyl coenzyme A carboxylase system of Escherichia coli. Purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein components. J Biol Chem 249:6633–6645
Hamilton JJ, Reed JL (2012) Identification of functional differences in metabolic networks using comparative genomics and constraint-based models. PLoS ONE 7(4):e34670
Hamilton ML, Haslam RP, Napier JA, Sayanova O (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9
Hamilton ML, Powers S, Napier JA, Sayanova O (2016) Heterotrophic production of omega-3 long-chain polyunsaturated fatty acids by trophically converted marine diatom Phaeodactylum tricornutum. Mar Drugs 14:pii:E53
Hayashi S, Satoh Y, Ujihara T, Takata Y, Dairi T (2016) Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins. Sci Rep 6:35441
Heath RJ, Rock CO (1996) Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J Biol Chem 271:27795–27801
Hendry JI, Prasannan CB, Joshi A, Dasgupta S, Wangikar PP (2016) Metabolic model of Synechococcus sp. PCC 7002: prediction of flux distribution and network modification for enhanced biofuel production. Bioresour Technol 213:190–197
Hernandez MA, Gleixner G, Sachse D, Alvarez HM (2017) Carbon allocation in Rhodococcus jostii RHA1 in response to disruption and overexpression of nlpR regulatory gene, based on (13)C-labeling analysis. Front Microbiol 8:1992
Holdsworth JE, Ratledge C (1991) Triacylglycerol synthesis in the oleaginous yeast Candida curvata D. Lipids 26:111–118
Holdsworth JE, Veenhuis M, Ratledge C (1988) Enzyme activities in oleaginous yeasts accumulating and utilizing exogenous or endogenous lipids. J Gen Microbiol 134:2907–2915
Hoskisson PA, Hobbs G, Sharples GP (2001) Antibiotic production, accumulation of intracellular carbon reserves, and sporulation in Micromonospora echinospora (ATCC 15837). Can J Microbiol 47:148–152
Hou TY, Davidson LA, Kim E, Fan YY, Fuentes NR, Triff K, Chapkin RS (2016) Nutrient-gene interaction in colon cancer, from the membrane to cellular physiology. Annu Rev Nutr 36:543–570
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639
Huang C, Chen XF, Xiong L, Chen XD, Ma LL, Chen Y (2013) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31:129–139
Imam S, Schäuble S, Valenzuela J, López García de Lomana A, Carter W, Price ND, Baliga NS (2015) A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses. Plant J 84:1239–1256
Iwai M, Hori K, Sasaki-Sekimoto Y, Shimojima M, Ohta H (2015) Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii. Front Microbiol 6:912
Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202
Jiang Y, Chen F (2000) Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalgae Crypthecodinium cohnii. J Amer Oil Chem Soc 77:613
Juneja A, Chaplen FWR, Murthy GS (2016) Genome scale metabolic reconstruction of Chlorella variabilis for exploring its metabolic potential for biofuels. Bioresour Technol 213:103–110
Kajikawa M, Sawaragi Y, Shinkawa H, Yamano T, Ando A, Kato M, Hirono M, Sato N, Fukuzawa H (2015) Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency. Plant Physiol 168:752–764
Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928
Kavscek M, Bhutada G, Madl T, Natter K (2015) Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC Sys Biol 9:72
Kerkhoven EJ, Pomraning KR, Baker SE, Nielsen J (2016) Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. NPJ Sys Biol Appl 2:16005
Kikukawa H, Sakuradani E, Ando A, Okuda T, Shimizu S, Ogawa J (2016) Microbial production of dihomo-γ-linolenic acid by Δ5-desaturase gene-disruptants of Mortierella alpina 1S-4. J Biosci Bioeng 122:22–26
Konishi T, Sasaki Y (1994) Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc Natl Acad Sci U S A 91:3598–3601
Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:53–61
Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Lopez Garcia I, Kookos IK, Papanikolaou S, Kwan TH, Lin CS (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43:2587–2627
Kuo J, Khosla C (2014) The initiation ketosynthase (FabH) is the sole rate-limiting enzyme of the fatty acid synthase of Synechococcus sp. PCC 7002. Metab Eng 22:53–59
Leber R, Zinser E, Zellnig G, Paltauf F, Daum G (1994) Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10:1421–1428
Leber C, Polson B, Fernandez-Moya R, Da Silva NA (2015) Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae. Metab Eng 28:54–62
Ledesma-Amaro R (2015) Microbial oils: a customizable feedstock through metabolic engineering. Eur J Lipid Sci Technol 117:141–144
Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud JM (2016) Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng 38:38–46
Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358
Lee S, Park S, Park C, Pack SP, Lee J (2014) Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol. Enzym Microb Technol 67:8–16
Lee JM, Lee H, Kang S, Park WJ (2016) Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 8:pii:E23
Lemoigne M (1926) Produits de deshydration et de polymerisation de lácide β-oxybutyrique. Bull Soc Chim Biol 8:770–782
Lenihan-Geels G, Bishop KS, Ferguson LR (2013) Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients 5:1301–1315
Lennen RM, Pfleger BF (2012) Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 30:659–667
Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD II (2011) Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 77:8114–8128
Levering J, Broddrick J, Dupont CL, Peers G, Beeri K, Mayers J, Gallina AA, Allen AE, Palsson BO, Zengler K (2016) Genome-scale model reveals metabolic basis of biomass partitioning in a model diatom. PLoS One 11:e0155038
Li DW, Cen SY, Liu YH, Balamurugan S, Zheng XY, Alimujiang A, Yang WD, Liu JS, Li HY (2016) A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. J Bacteriol 229:65–71
Liang MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408
Liu B, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24:300–309
Liu H, Yu C, Feng D, Cheng T, Meng X, Liu W, Zou H, Xian M (2012) Production of extracellular fatty acid using engineered Escherichia coli. Microb Cell Factories 11:41
Loira N, Dulermo T, Nicaud JM, Sherman DJ (2012) A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Syst Biol 6:35
Loira N, Mendoza S, Paz Cortés M, Rojas N, Travisany D, Genova AD, Gajardo N, Ehrenfeld N, Maass A (2016) Reconstruction of the microalga Nannochloropsis salina genome-scale metabolic model with applications to lipid production. BMC Syst Biol 11:66
Lombard J, Moreira D (2011) Early evolution of the biotin-dependent carboxylase family. BMC Evol Biol 11:232
Maia P, Rocha M, Rocha I (2016) In silico constraint-based strain optimization methods: the quest for optimal cell factories. Microbiol Mol Biol Rev 80:45–67
Makri A, Bellou S, Birkou M, Papatrehas K, Dolapsakis NP, Bokas D, Papanikolaou S, Aggelis G (2011) Lipid synthesized by micro-algae grown in laboratory and industrial-scale bioreactors. Eng Life Sci 11:52–58
Makula RA, Lockwood PJ, Finnerty WR (1975) Comparative analysis of the lipids of Acinetobacter species grown on hexadecane. J Bacteriol 121:250–258
Marketsandmarkets (2016) Omega-3 PUFA Market by Type (DHA, EPA, ALA), Application (Dietary Supplements, Functional Foods & Beverages, Pharmaceuticals, Infant Formula), Source (Marine, Plant), Sub-source), & Region – Global Forecasts to 2020
Marrakchi H, Choi KH, Rock CO (2002) A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J Biol Chem 277:44809–44816
Meng X, Yang J, Cao Y, Li L, Jiang X, Xu X, Liu W, Xian M, Zhang Y (2011) Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. J Ind Microbiol Biotechnol 38:919–925
Meng X, Shang H, Zheng Y, Zhang Z (2013) Free fatty acid secretion by an engineered strain of Escherichia coli. Biotechnol Lett 35:2099–2103
Metz JG, Roessler P et al (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293
Michinaka Y, Shimauchi T, Aki T, Nakajima T, Kawamoto S, Shigeta S, Suzuki O, Ono K (2003) Extracellular secretion of free fatty acids by disruption of a fatty acyl-CoA synthetase gene in Saccharomyces cerevisiae. J Biosci Bioeng 95:435–440
Mishra P, Park GY, Lakshmanan M, Lee HS, Lee H, Chang MW, Ching CB, Ahn J, Lee DY (2016) Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production. Biotechnol Bioeng 113:1993–2004
Mishra P, Lee NR, Lakshmanan M, Kim M, Kim BG, Lee DY (2018) Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica. BMC Syst Biol 12:12
Mordor Intelligence (2017) Global arachidonic acid market – market shares, forecasts and trends (2017–2022)
Mueller TJ, Ungerer JL, Pakrasi HB, Maranas CD (2017) Identifying the metabolic differences of a fast-growth phenotype in Synechococcus UTEX 2973. Sci Rep 7:41569
Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB, Li HY (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558–4569
Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A 109:2678–2683
O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161:971–987
Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C (2016) Production strategies and applications of microbial single cell oils. Front Microbiol 7:1539
Okuda T, Ando A, Negoro H, Kikukawa H, Sakamoto T, Sakuradani E, Shimizu S, Ogawa J (2015) Omega-3 eicosatetraenoic acid production by molecular breeding of the mutant strain S14 derived from Mortierella alpina 1S-4. J Biosci Bioeng 120:299–304
Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 140:931–943
Pan P, Hua Q (2012) Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS One 7:e51535
Park JH, Lee SY (2008) Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 19:454–460
Park JJ, Wang H, Gargouri M, Deshpande RR, Skepper JN, Holguin FO, Juergens MT, Shachar-Hill Y, Hicks LM, Gang DR (2015) The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. Plant J 81:611–624
Park BG, Kim M, Kim J, Yoo H, Kim BG (2017) Systems biology for understanding and engineering of heterotrophic oleaginous microorganisms. Biotenhnol J 12(1):1600104
Peng KT, Zheng CN, Xue J, Chen XY, Yang WD, Liu JS, Bai W, Li HY (2014) Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. J Agric Food Chem 62:8773–8776
Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247
Poirier Y, Nawrat C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Bio/Technology 13:142–150
Qi B, Beaudoin F, Fraser T, Stobart AK, Napier JA, Lazarus CM (2002) Identification of a cDNA encoding a novel C18-Delta(9) polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS Lett 510:159–165
Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815
Ratledge C (2006) Microbial production of gamma-linolenic acid. In: Akoh AA (ed) Handbook of functional lipids. Taylor & Francis, Baco Raton, pp 19–45
Ratledge C (2013) Microbial oils: an introductory overview of current status and future prospects. OCL 20:D602
Ratledge C, Wynn J (1974) Microbial production of oils and fats. Food from waste. Applied Science Publishers, Selby, North Yorkshire, pp 98–113
Ratledge C, Kanagachandran K, Anderson AJ, Grantham DJ, Stephenson JC (2001) Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source lipids. Lipids 36:1241–1246
Raymond RL, Davis JB (1960) N-alkane utilization and lipid formation by a Nocardia. Appl Microbiol 8:329–334
Rigouin C, Gueroult M, Croux C, Dubois G, Borsenberger V, Barbe S, Marty A, Daboussi F, André I, Bordes F (2017) Production of medium chain fatty acids by Yarrowia lipolytica: combining molecular design and TALEN to engineer the fatty acid synthase. ACS Synth Biol 6:1870–1879
Roessler PG (1988) Effects of silicon deficiency on lipid composition and metabolism in the diatom in Cyclotella cryptica. J Phycol 24:394–400
Russell NJ, Volkman JK (1980) The effect of growth temperature on wax ester composition in the psychrophilic bacterium Micrococcus cryophilus ATCC 15174. Microbiology 118:131–141
Ryan A, Zeller S, Nelson EB (2010) Safety evaluation of single cell oils and the regulatory requirements for use as food ingredients. In: Cohen Z, Ratledge C (eds) Single Cell Oils, 2nd edn. AOCS Press, Champaign, pp 317–350
Ryckebosch E, Bermúdez SPC, Termote-Verhalle R, Bruneel C, Muylaert K, Parra-Saldivar R, Foubert I (2014a) Influence of extraction solvent system on the extractability of lipid components from the biomass of Nannochloropsis gaditana. J Appl Phycol 26:1501–1510
Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I (2014b) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400
Saha R, Verseput AT, Berla BM, Mueller TJ, Pakrasi HB, Maranas CD (2012) Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. PLoS One 7:e48285
Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN et al (2009) Application of supercritical CO2 in lipid extraction – a review. J Food Eng 95:240–253
Sakuradani E, Ando A, Shimizu S, Ogawa J (2013) Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4. J Biosci Bioeng 116:417–422
Sancholle M, Lösel D (1995) Lipids in fungal biotechnology. In: Kuck U (ed) The Mycota, Genetics and biotechnology, vol 11. Springer, Berlin, pp 339–367
Schmollinger S, Muhlhaus T et al (2014) Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26:1410–1435
Schweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68:501–517
Scott CC, Finnerty WR (1976) Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N. J Bacteriol 127:481–489
Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286
Seip J, Jackson R, He H, Zhu Q, Hong SP (2013) Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Appl Environ Microbiol 79:7360–7370
Senanayake SPJN, Fichtali J (2006) Single-celloils as sources of nutraceutical and specialty lipids: processing technologies and applications. In: Shahidi F (ed) Nutraceutical and specialty lipids and their co-products. CRC Press, Boca Raton, pp 251–280
Serrano L (2007) Synthetic biology: promises and challenges. Mol Syst Biol 3:158
Shi S, Zhao H (2017) Metabolic engineering of oleaginous yeasts for production of fuels and chemicals. Front Microbiol 8:2185
Shi S, Chen Y, Siewers V, Nielsen J (2014) Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio 5:e01130–e01114
Shi H, Chen H, Gu Z, Zhang H, Chen W, Chen YQ (2016) Application of a delta-6 desaturase with α-linolenic acid preference on eicosapentaenoic acid production in Mortierella alpina. Microb Cell Factories 15:117
Sijtsma L, de Swaaf ME (2004) Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64:146–153
Silverman AM, Qiao K, Xu P, Stephanopoulos G (2016) Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 100:3781–3798
Sinclair AJ, Jayasooriya A (2010) Nutritional aspects of single cell oils: applications of arachidonic acid and docosahexaenoic acid oils. In: Cohen Z, Ratledge C (eds) Single Cell Oils. AOCS Press, Champaign, pp 351–368
Singer ME, Tyler SM, SM FWR (1985) Growth of Acinetobacter sp. strain HO1-N on n-hexadecanol: physiological and ultrastructural characteristics. J Bacteriol 162:162–169
Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. Journal of bioscience and bioengineering 101(2):87–96
Sprague M, Dick JR, Tocher DR (2016) Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015. Sci Rep 6:21892
Sprague M, Betancor MB, Tocher DR (2017) Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds. Biotechnol Lett 39:1599–1609
Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24
Stöveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbüchel A (2005) The wax ester synthase/acyl coenzyme a:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol 187:1369–1376
Stracka D, Jozefczuk S, Rudroff F, Sauer U, Hall MN (2014) Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/rag proteins. J Biol Chem 289:25010–25020
Tajparast M, Frigon D (2015) Genome-scale metabolic model of Rhodococcus jostii RHA1 (iMT1174) to study the accumulation of storage compounds during nitrogen-limited condition. BMC Syst Biol 9:43
Tapia VE, Anschau A, Coradini AL, T Franco T, Deckmann AC (2012) Optimization of lipid production by the oleaginous yeast Lipomyces starkeyi by random mutagenesis coupled to cerulenin screening. AMB Express 2:64
Tee TW, Chowdhury A, Maranas CD, Shanks JV (2014) Systems metabolic engineering design: fatty acid production as an emerging case study. Biotechnol Bioeng 111:849–857
Thevenieau F, Nicaud JM (2013) Microorganisms as sources of oils. OCL 20:1–8
Totani N, Watanabe A, Oba K (1987) An improved method of arachidonic acid production by Mortierella sp. S-17. J Jpn Oil Chem Soc 36:328–331
Tran TH, Hsiao YS, Jo J, Chou CY, Dietrich LE, Walz T, Tong L (2015) Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase. Nature 518:120–124
Triana J, Montagud A, Siurana M, Fuente D, Urchueguía A, Gamermann D, Torres J, Tena J, de Córdoba PF, Urchueguía JF (2014) Generation and evaluation of a genome-scale metabolic network model of Synechococcus elongatus PCC7942. Meta 4:680–698
Uematsu Y, Hirata K, Suzuki K, Iida K, Kamata K (2002) Survey of residual solvents in natural food additives by standard addition head-space GC. Food Addit Contam 19:335–342
Uemura H (2012) Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Appl Microbiol Biotechnol 95:1–12
Uttaro AD (2006) Biosynthesis of polyunsaturated fatty acids in lower eukaryotes. IUBMB Life 58:563–571
Vongsangnak W, Klanchui A, Tawornsamretkit I, Tatiyaborwornchai W, Laoteng K, Meechai A (2016) Genome-scale metabolic modeling of Mucor circinelloides and comparative analysis with other oleaginous species. Gene 583:121–129
Vu TT, Stolyar SM, Pinchuk GE, Hill EA, Kucek LA et al (2012) Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142. PLoS Comp Biol 8:e1002460
Vu TT, Hill EA, Kucek LA, Konopka AE, Beliaev AS, Reed JL (2013) Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production. Biotechnol J 8:619–630
Wallis JG, Browse J (1999) The Delta8-desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Arch Biochem Biophys 365:307–316
Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619
Wältermann M1, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763
Wang H, Cronan JE (2004) Functional replacement of the FabA and FabB proteins of Escherichia coli fatty acid synthesis by Enterococcus faecalis FabZ and FabF homologues. J Biol Chem 279:34489–34495
Wang L, Takayama K, Goldman DS, Schnoes HK (1972) Synthesis of alcohol and wax ester by a cell-free system in Mycobacterium tuberculosis. Biochim Biophys Acta 260:41–48
Wang X, Liu Y, Wei W, Zhou X, Yuan W, Balamurugan S, Hao T, Yang W, Liu J, Li H (2017) Enrichment of long-chain polyunsaturated fatty acids by coordinated expression of multiple metabolic nodes in the oleaginous microalga Phaeodactylum tricornutum. J Agric Food Chem 65:7713–7720
Wei H, Shi Y, Ma X, Pan Y, Hu H, Li Y, Luo M, Gerken H, Liu J (2017a) A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica. Biotechnol Biofuels 10:174
Wei S, Jian X, Chen J, Zhang C, Hua Q (2017b) Reconstruction of genome-scale metabolic model of Yarrowia lipolytica and its application in overproduction of triacylglycerol. Bioresour Bioprocess 4:51
White SW, Zheng J, Zhang YM, Rock (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74:791–831
Wu ST, Yu ST, Lin LP (2005) Effect of culture conditions on docosahexae-noic acid production by Schizochytrium sp. S31. Process Biochem 40(9):3103–3108
Wu H, San KY (2014) Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli. Biotechnol Bioeng 111:2209–2219
Xiao K, Yue XH, Chen WC, Zhou XR, Wang L, Xu L, Huang FH, Wan X (2018) Metabolic engineering for enhanced medium chain omega hydroxy fatty acid production in Escherichia coli. Front Microbiol 9:139
Xin Y, Lu Y, Lee YY, Wei L, Jia J, Wang Q, Wang D, Bai F, Hu H, Hu Q, Liu J, Li Y, Xu J (2017) Producing designer oils in industrial microalgae by rational modulation of co-evolving type-2 diacylglycerol acyltransferases. Mol Plant 10:1523–1539
Xu P, Qiao K, Stephanopoulos G (2017) Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnol Bioeng 114:1521–1530
Xue ZX, Sharpe PL, Hong SP, Yadav NS, Xie D, Short DR et al (2013) Sustainable source of omega-3 eicopentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotech 31:734–740
Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9
Xue J, Wang L, Zhang L, Balamurugan S, Li DW, Zeng H, Yang WD, Liu JS, Li HY (2016) The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa. Microb Cell Factories 15:120
Yamada K (2017) Development of multifunctional foods. Biosci Biotechnol Biochem 81:849–853
Yamada R, Kashihara T, Ogino H (2017) Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis. World J Microbiol Biotechnol 33:99
Yano Y, Nakayama A, Yoshida K (1997) Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl Environ Microbiol 63:2572–2577
Ye C, Xu N, Chen H, Chen YQ, Chen W, Liu L (2015) Reconstruction and analysis of a genome-scale metabolic model of the oleaginous fungus Mortierella alpina. BMC Syst Biol 9:1
Yoshida K, Hashimoto M, Hori R, Adachi T, Okuyama H, Orikasa Y, Nagamine T, Shimizu S, Ueno A, Morita N (2016) Bacterial long-chain polyunsaturated fatty acids: their biosynthetic genes, functions, and practical use. Mar Drugs 14:pii:E94
Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81
Zhang J, Vaga S, Chumnanpuen P, Kumar R, Vemuri GN, Aebersold R, Nielsen J (2011) Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol 7:545
Zhu K, Choi KH, Schweizer HP, Rock CO, Zhang YM (2006) Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Mol Microbiol 60:260–273
Zhu Q, Jackson EN (2015) Metabolic engineering of Yarrowia lipolytica for industrial applications. Current opinion in biotechnology 36:65–72
Zienkiewicz K, Zienkiewicz A, Poliner E, Du ZY, Vollheyde K, Herrfurth C, Marmon S, Farré EM, Feussner I, Benning C (2017) Nannochloropsis, a rich source of diacylglycerol acyltransferases for engineering of triacylglycerol content in different hosts. Biotechnol Biofuels 10:8
Zuñiga C, Li CT, Huelsman T, Levering J, Zielinski DC, McConnell BO, Long CP, Knoshaug EP, Guarnieri MT, Antoniewicz MR, Betenbaugh MJ, Zengler K (2016) Genome-scale metabolic model for the green alga Chlorella vulgaris UTEX 395 accurately predicts phenotypes under autotrophic, heterotrophic, and mixotrophic growth conditions. Plant Physiol 172:589–602
Zweytick D, Athenstaedt K, Daum G (2000) Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 1469:101–120
Acknowledgments
This chapter is supported by grants from the Community of Madrid and the Structural Funds of the European Union (Ref: S2013/ABI2783 (INSPIRA1-CM)), the Ministry of Economy, the Industry and Competitiveness (Ref: RTC-2016-4860-2; Ref: BFU2014-55534-C2-1-P), and the Intramural Program of the CSIC (Ref: 201420E086) and the H2020 FET-OPEN program (LIAR: Ref 686585).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this entry
Cite this entry
Galán, B., Santos-Merino, M., Nogales, J., de la Cruz, F., García, J.L. (2020). Microbial Oils as Nutraceuticals and Animal Feeds. In: Goldfine, H. (eds) Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-030-15147-8_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-15147-8_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15146-1
Online ISBN: 978-3-030-15147-8
eBook Packages: Biomedical and Life SciencesReference Module Biomedical and Life Sciences