Skip to main content

Hormoconis resinae, The Kerosene Fungus

  • Reference work entry
  • First Online:
Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes

Abstract

The ascomycete Amorphotheca resinae Parbery (1969) is widely known by the anamorph name Hormoconis resinae (Lindau) Arx & G.A. de Vries or its obligate synonym Cladosporium resinae (Lindau) G.A. de Vries. It belongs to Saccharomyceta, Pezizomycotina, Leotiomyceta, Sordariomyceta, Leotiomycetes, Leotiomycetes incertae sedis, and Myxotrichaceae. This fungus has been isolated from natural environments (soil, freshwater, and marine) and manufactured environments. In particular, it grows in hydrocarbon-rich substrates such as jet fuel, diesel, petroleum, and wood preserved with creosote or coal tar. In the 1960s, the ascomycete A. resinae was reported as one of the most common fuel-deteriorating microorganisms. This species is known colloquially as the kerosene, petroleum, jet fuel, or creosote fungus. It utilizes aliphatic and aromatic hydrocarbons, as well as alcohols and acids. The processes involved in n-alkane uptake and metabolism by H. resinae have been studied in detail, and it has demonstrated a constitutive n-alkane-oxidizing system. Its growth can lead to serious biodeterioration of the final product quality, the formation of sludge, and deterioration of pipework and storage tanks, both in the refinery and at the end-user facility. H. resinae has a broad distribution and is commonly found in soil or water that could be potential sources of contamination for petroleum tanks, leading to biodeterioration and economic loss. Therefore, a considerable amount of literature has been reported on this species in the twentieth century, corresponding to the increase in the anthropogenic use of petroleum and its refined products. This chapter presents an overview of the research conducted on the so-called kerosene fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahearn DG, Meyers SP (1972) The role of fungi in the decomposition of hydrocarbons in the marine environment. In: Walters HA, Huek-van de Plas EH (eds) Biodeterioration of materials, vol 2. Applied Science Publishers, London, pp 12–18

    Google Scholar 

  • Allsopp D, Seal KJ (1986) Introduction to biodeterioration. Edward Arnold, New York

    Google Scholar 

  • Bailey CA, May ME (1979) Evaluation of microbiological test kits for hydrocarbon fuel systems. Appl Enviorn Microbiol 37:871–877

    CAS  Google Scholar 

  • Bento FM (2001) Biodeterioration of stored diesel oil: studies in Brazil. Int Biodeter Biodegr 47:107–112

    Article  CAS  Google Scholar 

  • Bento FM, Gaylarde CC (1996) Microbial contamination of stored diesel oil in Brazil. Rev Microbiol 27:192–196

    Google Scholar 

  • Bento FM, Gaylarde CC (1998) Effect of additives on fuel stability. A microbiological study. In: Gaylarde CC, Barbosa TC, Gabilan NH (eds) LABS 3. Third Latin American biodegradation and biodeterioration symposium. The British Phycological Society, paper no. 10, 1998

    Google Scholar 

  • Bento FM, Gaylarde CC (2001) Biodeterioration of stored diesel oil: studies in Brazil. Int Biodeter Biodegr 47:107–112

    Article  CAS  Google Scholar 

  • Bhatt GC (1970) The soil microfungi of white cedar forests in Ontario. Can J Bot 48:333–339

    Article  Google Scholar 

  • Carson DB, Cooney JJ (1988a) Spheroplast formation and partial purification of microbodies from hydrocarbon-grown cells of Cladosporium resinae. J Ind Microbiol 3:111–117

    Article  CAS  Google Scholar 

  • Carson DB, Cooney JJ (1988b) Characterization of partially purified microbodies from hydrocarbon-grown cells of Cladosporium resinae. Can J Microbiol 35:565–572

    Article  Google Scholar 

  • Christensen CM, Kaufert FH, Schmitz H, Allison JL (1942) Hormodendron resinae Lindau an inhabitant of wood impregnated with creosote and coal tar. Am J Bot 29:552–558

    Article  Google Scholar 

  • Clark AM, Hufford CD (1979) Microbial transformations of the sesquiterpene lactone costunolide. J Chem Soc Perkin Trans 1:3022–3028

    Article  Google Scholar 

  • Cofone L, Walker JD, Cooney JJ (1973) Utilization of hydrocarbons by Cladosporium resinae. J Gen Microbiol 76:243–246

    Article  CAS  PubMed  Google Scholar 

  • Cooney JJ (1969) Effects of polyurethane foams on microbial growth in fuel-water systems. Appl Microbiol 17:227–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney JJ, Felix JA (1970) Polyurethane foams and foam additives in hydrocarbon fuel-water systems. Dev Ind Microbiol 11:210–224

    Google Scholar 

  • Cooney JJ, Kula TJ (1970) Growth and survival of organisms isolated from hydrocarbon fuel systems. Int Biodeterior Bull 6:109–114

    Google Scholar 

  • Cooney JJ, Proby CM (1971) Fatty acid composition of Cladosporium resinae grown on glucose and on hydrocarbons. J Bacteriol 108:777–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney JJ, Edmonds P, Brenner QM (1968) Growth and survival of fuel isolates in hydrocarbon-fuel emulsions. Appl Microbiol 16:569–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney JJ, Siporin C, Smucker RA (1980) Physiological and cytological responses to hydrocarbons by the hydrocarbon-using fungus Cladosporium resinae. Bot Mar 23:227–232

    CAS  Google Scholar 

  • Crous PW, Braun U, Schubert K, Groenewald JZ (2007) Delimiting Cladosporium from morphologically similar genera. Stud Mycol 58:33–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vries GA (1952) Contribution to the knowledge of the genus Cladosporium Link ex Fr. Bibl Mycol 3:46–56

    Google Scholar 

  • De Vries GA (1955) Cladosporium avellaneum de Vries, a synonym of Hormodendrum resinae Lindau. A Van Leeuw 21:166–168

    Article  Google Scholar 

  • Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett 281:109–120

    Article  CAS  PubMed  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (2007) Compendium of soil fungi. IHW-Verlag, Eching, pp 1–672

    Google Scholar 

  • Edmonds P (1965) Selection of test organisms for use in evaluating microbial inhibitors in fuel-water systems. Appl Microbiol 13:823–824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edmonds P, Cooney JJ (1967) Identification of microorganisms isolated from jet fuel systems. Appl Microbiol 15:411–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edmonds P, Cooney JJ (1968) Microbial growth in a fuel-water system containing polyesterurethane foam. Appl Microbiol 16:426–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fagerström R, Vainio A, Suoranta K, Pakula T, Kalkkinen N, Torkkeli H (1990) Comparison of two glucoamylases from Hormoconis resinae. J Gen Microbiol 136:913–920

    Article  PubMed  Google Scholar 

  • Fujii K, Sugimura T, Nakatake K (2010) Ascomycetes with cellulolytic, amylolytic, pectinolytic, and mannanolytic activities inhabiting dead beech (Fagus crenata) trees. Folia Microbiol 55:29–34

    Article  CAS  Google Scholar 

  • Gaylarde CC (1990) Advances in detection of microbiologically induced corrosion. Int Biodeterior 26:11–22

    Article  Google Scholar 

  • Gaylarde CC, Bento FM, Kelley JK (1999) Microbial contamination of stored hydrocarbon fuels and its control. Rev Microbiol 30:1–10

    Article  CAS  Google Scholar 

  • Goma G, Pareilleux A, Durand G (1973) Specific hydrocarbon solubilization during growth of Candida lipolytica. J Ferment Technol 51:616–618

    CAS  Google Scholar 

  • Goswami P, Cooney JJ (1999) Subcellular location of enzymes involved in oxidation of n-alkane by Cladosporium resinae. Appl Microbiol Biotechnol 51:860–864

    Article  CAS  Google Scholar 

  • Goto S, Yamakawa Y, Yokotsuka I (1975) Classification of fragrant odor producing Cladosporium: studies on fragrant odor producing microorganisms I. J Agric Chem Soc Jpn 49:377–381

    Google Scholar 

  • Guiamet P, Gaylarde CC (1996) Activity of an isothiazolone biocide against Hormoconis resinae in pure and mixed biofilms. World J Microbiol Biotechnol 12:395–397

    Article  CAS  PubMed  Google Scholar 

  • Hendey NI (1964) Some observations on Cladosporium resinae as a fuel contaminant and its possible role in the corrosion of aluminium alloy fuel tanks. Trans Br Mycol Soc 47:467–475

    Article  CAS  Google Scholar 

  • Hettige GEG, Sheridan JE (1984) Mycoflora of stored diesel fuel in New Zealand. Int Biodeter Bull 20:225–228

    Google Scholar 

  • Hettige GEG, Sheridan JE (1989) Interactions of Fungi contaminating diesel fuel. Int Biodeterior 25:299–309

    Article  Google Scholar 

  • Itah AY, Brooks AA, Oga BO, Okure AB (2009) Biodegradation of international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems. Bull Environ Contam Toxicol 83:318–327

    Article  CAS  PubMed  Google Scholar 

  • Joutsjoki VV, Torkkeli TK (1992) Glucoamylase P gene of Hormoconis resinae: molecular cloning sequencing and introduction into Trichoderma reesei. FEMS Microbiol Lett 99:237–244

    Article  CAS  Google Scholar 

  • Kerry E (1990) Microorganisms colonizing plants and soil subjected to different degrees of human activity, including petroleum contamination, in the Vestfold hills and MacRobertson Land, Antarctica. Polar Biol 10:423–430

    Google Scholar 

  • Kirk PM (2017) Species Fungorum (version Jan 2016). In: Roskov Y, Abucay L, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, De Walt RE, Decock W, De Wever A, Van Nieukerken E, Zarucchi J, Penev L (eds) Species 2000 & ITIS Catalogue of Life, 26th July 2017. Digital resource at www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden. ISSN 2405-8858

  • Lindau G (1906) Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz. Zweite Auflage. Erster Band: Die Pilze Deutschlands, Österreichs und der Schweiz. VIII. Abteilung: Fungi imperfecti: Hyphomycetes (erste Hälfte). Lief 102:641–704

    Google Scholar 

  • Lindau G (1907) Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Oesterreich and der Schweiz, ed. 2. – Die Pilze 8. Lief 95:177–256

    Google Scholar 

  • Lindley ND (1995) Bioconversion and biodegradation of aliphatic hydrocarbons. Can J Bot 73:1034–1042

    Article  Google Scholar 

  • Lindley ND, Heydeman MT (1983) Uptake of vapour phase [14C]Dodecane by whole mycelia of Cladosporium resinae. J Gen Microbiol 129:2301–2305

    CAS  Google Scholar 

  • Lindley ND, Heydeman MT (1985) Alkane utilisation by Cladosporium resinae: the importance of extended lag phases when assessing substrate optima. FEMS Microbiol Ecol 31:307–310

    Article  CAS  Google Scholar 

  • Lindley ND, Heydeman MT (1986a) The uptake of n-alkanes from alkane mixtures during growth of the hydrocarbon-utilizing fungus Cladosporium resinae. Appl Microbiol Biotechnol 23:384–388

    Article  CAS  Google Scholar 

  • Lindley ND, Heydeman MT (1986b) Mechanism of dodecane uptake by whole cells of Cladosporium resinae. J Gen Microbiol 132:751–756

    CAS  Google Scholar 

  • Lopes PTC, Gaylarde CC (1996) Use of immunofluorescence to detect Hormoconis resinae in aviation kerosine. Int Biodeter Biodegr 37:37–40

    Article  Google Scholar 

  • Lopez SE, Bertoni MD, Cabral D (1990) Fungal decay in creosote-treated Eucalyptus power transmission poles. 1. Survey of the flora. Mat Org 25:287–293

    Google Scholar 

  • Marsden DM (1954) Studies of the creosote fungus Hormodendron resinae. Mycologia 46:161–183

    Article  Google Scholar 

  • Martin-Sanchez PM, Gorbushina AA, Kunt HJ, Toepel J (2016) A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae. Biofouling 32:635–644

    Article  CAS  PubMed  Google Scholar 

  • May ME, Neihof RA (1979) Microbial deterioration of hydrocarbon fuels from oil shale, coal, and petroleum. I. Exploratory experiments. Naval Research Laboratory Report 4060. ADA073 761

    Google Scholar 

  • McCleary BV, Anderson MA (1980) Hydrolysis of alpha-D-glucans and alpha-D-gluco-oligosaccharides by Cladosporium resinae glucoamylases. Carbohydr Res 86:77–96

    Article  CAS  PubMed  Google Scholar 

  • Mishra AN, Bhadauria S, Gaur MS, Pasricha R (2010) Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. JOM 62:45–48

    Article  CAS  Google Scholar 

  • Nicot J, Zakartchenko V (1966) Remarques sur la morphologie et la biologie du Cladosporium resinae (Lindau) de Vries. Rev Mycol 31:48–74

    Google Scholar 

  • Parbery DG (1968) The soil as a natural source of Cladosporium resinae. In: Walters AW, Elphick JJ (eds) Biodeterioration of materials: microbiological and allied aspects. London, Elsevier

    Google Scholar 

  • Parbery DG (1969a) Amorphotheca resinae gen. nov., sp. nov.: The perfect state of Cladosporium resinae. Aust J Bot 17:331–357

    Article  Google Scholar 

  • Parbery DG (1969b) Isolation of the kerosene fungus, Cladosporium resinae, from Australian soil. Trans Br Mycol Soc 50:682–685

    Google Scholar 

  • Parbery DG (1969c) The natural occurrence of Cladosporium resinae. Trans Br Mycol Soc 53:15–23

    Article  Google Scholar 

  • Parbery DG (1970) The kerosene fungus, Amorphotheca resinae; its biology, taxonomy and control. Ph.D. Thesis, University of Melbourne

    Google Scholar 

  • Parbery DG (1971) Biological problems in jet aviation fuel and the biology of Amorphotheca resinae. Mater Org 6:161–208

    Google Scholar 

  • Passman FJ (2013) Microbial contamination and its control in fuels and fuel systems since 1980: a review. Int Biodeter Biodegr 81:88–104

    Article  CAS  Google Scholar 

  • Rabaev M, Shapira D, Geva J, Fass R, Sivan A (2009) Effect of the fuel system icing inhibitor diethylene glycol monomethyl ether on the biodegradation of jet fuel in soil. Int Biodeter Biodegr 63:311–315

    Article  CAS  Google Scholar 

  • Ribichich K, Lopez S (1996) In vitro interactions among species related to soft rot. Mater Org 30:231–236

    Google Scholar 

  • Rubidge T (1974) A new selective medium for the screening of aircraft fuels for biodeteriogenic fungi. Int Biodeterior Bull 10:53–55

    Google Scholar 

  • Rubidge T (1975) Inadequacy of a strontium chromate formulation for control of fungal growth in a kerosene/water system. Int Biodeterior Bull 11:133–135

    Google Scholar 

  • San-Blas G, Guanipa O, Moreno B, Pekerar S, San-Blas F (1996) Cladosporium carrionii and Hormoconis resinae (C. resinae): cell Wall and melanin studies. Curr Microbiol 32:11–16

    Article  CAS  PubMed  Google Scholar 

  • Seifert KA, Hughes SJ, Boulay H, Louis-Seize G (2007) Taxonomy, nomenclature and phylogeny of three cladosporium-like hyphomycetes, Sorocybe resinae, Seifertia azaleae and the Hormoconis anamorph of Amorphotheca resinae. Stud Mycol 58:235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan JE, Nelson J, Tan YL (1972) Studies on the kerosene fungus Cladosporium resinae (Lindau) De Vries Part II. The natural habitat of C. resinae. Tuatara 19:70–96

    Google Scholar 

  • Siporin C, Cooney JJ (1976) Inhibition of glucose metabolism by n-hexadecane in Cladosporium (Amorphotheca) resinae. J Bacteriol 128:235–241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smucker RA, Cooney JJ (1981) Cytological responses of Cladosporium resinae when shifted from glucose to hydrocarbon medium. Can J Microbiol 27:1209–1218

    Article  CAS  Google Scholar 

  • Teh JS, Lee KH (1973) Utilization of n-alkanes by Cladosporium resinae. App Microbiol 25:454–457

    Google Scholar 

  • Tugay TI, Zhdanova NN, Zheltonozhsky VA, Sadovnikov LV, Dighton J (2006) The influence of ionizing radiation on spore germination and emergent hyphal growth response reactions of microfungi. Mycologia 98:521–527

    Article  PubMed  Google Scholar 

  • Tugay TI, Zhdanova NN, Zheltonozhskiy VA, Sadovnikov LV (2007) Development of radioadaptive properties for microscopic fungi, long time located on terrains with a heightened background radiation after emergency on Chernobyl NPP. Radiats Biol Radioecol 47:543–549

    Google Scholar 

  • Turner APF, Higgins IJ, Gull K (1980) Microbodies in Cladosporium (Amorphotheca) resinae grown on glucose and n-alkanes. FEMS Microbiol Lett 9:115–119

    Article  CAS  Google Scholar 

  • Vainio AE, Torkkeli HT, Tuusa T, Aho SA, Fagerström BR, Korhola MP (1993) Cloning and expression of Hormoconis resinae glucoamylase P cDNA in Saccharomyces cerevisiae. Curr Genet 24:38–44

    Article  CAS  PubMed  Google Scholar 

  • von Arx JA (1973) Centraalbureau voor Schimmelcultures, Progress Report 1972. Verhandelingen Koninklijke Nederlandse Akademie van Wetenschappen Afdeling Natuurkunde 61:59–81

    Google Scholar 

  • Walker JD, Cooney JJ (1973) Pathway of n-alkane oxidation in Cladosporium resinae. J Bacteriol 115:635–639

    Google Scholar 

  • Wang CJK, Zabel RA (1990) Identification manual for fungi from utility poles in the eastern United States. American Type Culture Collection, Rockville, 356 pages

    Google Scholar 

  • Wang X, Gao Q, Bao J (2015) Transcriptional analysis of Amorphotheca resinae ZN1 on biological degradation of furfural and 5-hydroxymethylfurfural derived from lignocellulose pretreatment. Biotechnol Biofuels 8:1–13

    Article  CAS  Google Scholar 

  • Zhang J, Zhu Z, Wang X, Wang N, Wang W, Bao J (2010) Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol production. Biotechnol Biofuels 3:1–15

    Article  CAS  Google Scholar 

  • Zhdanova NN, Tugay T, Dighton J, Zheltonozhsky V, McDermott P (2004) Ionizing radiation attracts soil fungi. Mycol Res 108:1089–1096

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Rafin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rafin, C., Veignie, E. (2019). Hormoconis resinae, The Kerosene Fungus. In: McGenity, T. (eds) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-030-14796-9_3

Download citation

Publish with us

Policies and ethics