Skip to main content

Bioreactor Technology for In Vitro Berry Plant Cultivation

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Abstract

Woodland berries are among the most important berry species worldwide. They are a rich source of a wide variety of bioactive substances. They are demanded by the food and pharmacy processing industries, due to their delicious taste and high bioactivity value as well. In recent decades, in vitro micropropagation has become the standard for commercial propagation of certain plant species. However, the economic assessment of this technology shows that it is labor-intensive and the price of the plants obtained is high, thus directing the scientists to automate the in vitro propagation applying different bioreactor systems, which are characterized by constant environmental conditions of cultivation and high propagation rates, which influence directly on the reduction of the cost of propagated plants. This chapter provides information about traditional techniques for in vitro propagation of berry plants discussing the problems that appeared using this technology and summarizes also recent achievement in the development of bioreactor design and operation modes for the in vitro propagation of berry plants. The chapter presents a deep overview of phytochemical profiles and bioactivity of berry plants, because we believe that bioreactor technology is very prospective not only for micropropagation of plants but also for producing target metabolites that are responsible for the bioactivity of berry fruits as well as for the bioactivity of the extracts of different berry plant organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

AAS:

Atomic absorption spectrometry.

AFLPs:

Amplified fragment length polymorphism

ALT:

Alanine aminotransferase

AMD:

Age-related macular degeneration

BAP:

6-Benzylaminopurine

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

EIU:

Endotoxin-induced uveitis

EST:

Expressed sequence tag

FRAP:

Ferric reducing antioxidant power assay

GA3:

Gibberellic acid

GBS:

Genotyping by sequencing

GC-FID:

Gas chromatography coupled with flame ionization detector

HeLa:

Human cervical cancer cell line

HPLC-(DAD-ESI)-MS (HPLC/PDA-ESI/MS):

High-performance liquid chromatography coupled with photodiode array detector/electrospray ionization mass spectrometry

HPLC-DAD:

High-performance liquid chromatography coupled with diode array detector

HPLC-FLD:

High-performance liquid chromatography coupled with fluorescence detector

HPLC-RID:

High-performance liquid chromatography coupled with a refractive index detector

IBA:

Indole-3-butyric acid

LC-MS:

Liquid chromatography-mass spectrophotometry

LC-TOF-MS:

Liquid chromatography time-of-flight mass spectrometry

LDL:

Low-density lipoproteins

MCF7:

Human breast cancer cell line

MS:

Murashige and Skoog basal nutrient medium

NAA:

1-Naphthaleneacetic acid

ORAC:

Oxygen radical absorbance capacity

QTLs:

Quantitative trait loci

ROS:

Reactive oxygen species

SNPs:

Single nucleotide polymorphisms

SSRs:

Simple sequence repeats

TAA:

Total analyzed anthocyanins

TBARS:

Thiobarbituric acid reactive substance

TDZ:

Thidiazuron

TPC:

Total phenolic content

UPLC-PDA:

Ultra-performance liquid chromatography coupled with photodiode array detector

WPM:

Woody plant basal nutrient medium

References

  1. Jennings DL (1988) Raspberries and blackberries: their breeding, diseases and growth. Academic, London

    Google Scholar 

  2. Meng R, Finn C (2002) Determining ploidy level and nuclear DNA content in Rubus by flow cytometry. J Am Soc Hortic Sci 127:767–775

    Article  CAS  Google Scholar 

  3. Robertson KR (1974) The genera Rosaceae in the southeastern United States. J Arnold Arboretum 55:352–360

    Google Scholar 

  4. Dickinson T, Lo E, Talent N (2007) Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications. Plant Syst Evol 266:59–78

    Article  Google Scholar 

  5. Evans K, Symon D, Whalen M et al (2007) Systematics of the Rubus fruticosus aggregate (Rosaceae) and other exotic taxa in Australia. Aust Syst Bot 20:187–251

    Article  Google Scholar 

  6. Skirvin R, Motoike S, Coyner M et al (2005) Rubus spp. cane fruit. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publishing, Wallingford

    Google Scholar 

  7. Staudt G (1989) The species of Fragaria, their taxonomy and geographical distribution. Acta Hortic 265:23–34

    Google Scholar 

  8. Staudt G (1999) (a) Notes on Asiatic Fragaria species: fragaria nilgerrensis Schltdl. ex. J Gay Bot Jahrb Syst 121:297–310

    Google Scholar 

  9. Staudt G (1999) Systematics and geographic distribution of the American strawberry species: taxonomic studies in the genus Fragaria (Rosaceae: Potentilleae). University of California Press, Berkeley

    Google Scholar 

  10. Galletta G, Ballington J (1996) Blueberries, cranberries and lingonberries. In: Janick J, Moore J (eds) Fruit breeding, vol II, Vine and small fruit crops. Wiley, New York

    Google Scholar 

  11. Hancock J, Luby J, Beaudry R (2003) Fruits of the Ericaceae. In: Trugo L, Fingas P, Caballero B (eds) Encyclopedia of food science, food technology and nutrition. Academic, London

    Google Scholar 

  12. Lyrene P, Vorsa N, Ballingto N (2003) Polyploidy and sexual polyploidization in the genus Vaccinium. Euphytica 133:27–36

    Article  Google Scholar 

  13. Vorsa N, Rowland L (1997) Estimation of 2n megagametophyte heterozygosity in a diploid blueberry (Vaccinium darrowii camp) clone using RAPDs. J Hered 88:423–426

    Article  CAS  Google Scholar 

  14. Luby J, Ballington J, Draper A et al (1991) Blueberries and cranberries (Vaccinium). In: Moore J, Ballington J (eds) Genetic resources of temperate fruit and nut crops. ISHS, Wageningen

    Google Scholar 

  15. Gustavsson B (2001) Genetic variation in horticulturally important traits of fifteen wild lingonberry Vaccinium vitis-idaea L. populations. Euphytica 120:173–182

    Article  Google Scholar 

  16. Finn C, Mackey T (2006) Growth, yield, and fruit quality of 10 lingonberry (Vaccinium vitis-idaea) cultivars and selections in the United States Pacific Northwest. Acta Hortic 715:289–294

    Article  Google Scholar 

  17. Featherstone AW (2002) Species profile. Blaeberry (Vaccinium myrtillus). In: Caledonian Wild! Summer 2002. http://www.treesforlife.org.uk/newsletter/summer02.html

  18. Pardo De Santayana M, Tardio J, Morales R (2005) The gathering and consumption of wild edible plants in the Campoo (Cantabria, Spain). Int J Food Sci Nutr 56:529–542

    Article  PubMed  Google Scholar 

  19. Konvalchuk VK, Konvalchuk VV (2006) The resources of wild lowbush blueberries (Vaccinium myrtillus L., V. uligonosum) and highbush blueberry in Ukraine. Acta Hortic 715:55–59

    Article  Google Scholar 

  20. Coudun C, Gegout JC (2007) Quantitative prediction of the distribution and abundance of Vaccinium myrtillus with climatic and edaphic factors. J Veg Sci 18:517–524

    Article  Google Scholar 

  21. Kangas K, Markkanen P (2001) Factors affecting participation in wild berry picking by rural and urban dwellers. Silva Fennica 35:487–495

    Google Scholar 

  22. Kardell L, Eriksson L (1995) Bärproduktion ochmarkvegetation. Effekter av kvävegödsling och slutavverkning under en 15-årsperiod, 1976–1991. Report no. 60. Swedish University of Agricultural Sciences, Department of Environmental Forestry, 87pp. (In Swedish)

    Google Scholar 

  23. Miina J, Hotanen JP, Salo K (2009) Modelling the abundance and temporal variation in the production of bilberry (Vaccinium myrtillus L.) in finish mineral forests. Silva Fennica 43:577–593

    Article  Google Scholar 

  24. Nielsen A, Totland Ø, Ohlson M (2007) The effect of forest management operations on population performance of Vaccinium myrtillus on a landscape-scale. Basic Appl Ecol 8:231–241

    Article  CAS  Google Scholar 

  25. Nestby R, Percival D, Martinussen I et al (2011) The European blueberry (Vaccinium myrtillus L.) and the potential for cultivation. A review. Eur J Plant Sci Biotechnol 5:5–16

    Google Scholar 

  26. Hanhineva KJ, Kärenlampi SO (2007) Production of transgenic strawberries by temporary immersion bioreactor system and verification by TAIL-PCR. BMC Biotechnol 7(11)

    Google Scholar 

  27. Takayama S, And Misawa M (1981) Mass propagation of Begonia × hiemalis plantlets by shake culture. Plant Cell Physiol 22:461–467

    CAS  Google Scholar 

  28. Paek K-Y, Hahn E-J, Son S-H (2001) Application of bioreactors for large-scale micropropagation systems of plants. In Vitro Cellular Dev Biol Plant 37:149–157

    Article  CAS  Google Scholar 

  29. Debnath S (2011) Bioreactors and molecular analysis in berry crop micropropagation – a review. Can J Plant Sci 91:147–157

    Article  Google Scholar 

  30. Mamun NHA, Egertsdotter U, Aidun CK (2015) Bioreactor technology for clonal propagation of plants and metabolite production. Front Biol 10:177–193

    Article  CAS  Google Scholar 

  31. Debnath S (2009) A two-step procedure for adventitious shoot regeneration on excised leaves of lowbush blueberry. In Vitro Cell Dev Biol Plant 45:122–128

    Article  Google Scholar 

  32. Dzhambazova T, Badjakov I, Dincheva I et al (2015) New approaches for detection of unique qualities of small fruits. Omics Technol Crop Improv:187–208

    Google Scholar 

  33. Georgieva L, Tsvetkov I, Georgieva M et al (2016) New protocol for in vitro propagation of berry plants by TIS bioreactor. Bulg J Agric Sci 22:745–751

    Google Scholar 

  34. Ziv M (1991) Morphogenic patterns of plants micropropagated in liquid medium in shaken flasks or large-scale bioreactor cultures. Israel J Bot 40:145–153

    Google Scholar 

  35. Ziv M, Shemesh D (1996) Propagation and tuberization of potato bud clusters from bioreactor culture. In Vitro Plant 32:31–36

    Article  CAS  Google Scholar 

  36. Buricova L, Andjelkovic M, Cermakova A et al (2011) Antioxidant capacity and antioxidants of strawberry, blackberry, and raspberry leaves. Czech J Food Sci 29:181–189

    Article  CAS  Google Scholar 

  37. Ivanov I, Petkova N, Denev P et al (2015) Polyphenols content and antioxidant activities in infusion and decoction extracts obtained from Fragaria vesca L. leaves. Sci Bull Ser F Biotechnol 19:145–148

    Google Scholar 

  38. Dias MI, Barros L, Morales P et al (2016) Wild Fragaria vesca L. fruits: a rich source of bioactive phytochemicals. Food Funct 7:4523–4532

    Article  CAS  PubMed  Google Scholar 

  39. Dias MI, Barros L, Morales P et al (2015) Nutritional parameters of infusions and decoctions obtained from Fragaria vesca L. roots and vegetative parts. Lwt-Food Sci Technol 62:32–38

    Article  CAS  Google Scholar 

  40. Liberal J, Francisco V, Costa G et al (2014) Bioactivity of Fragaria vesca leaves through inflammation, proteasome and autophagy modulation. J Ethnopharmacol 158:113–122

    Article  PubMed  Google Scholar 

  41. Mudnic I, Modun D, Brizic I et al (2009) Cardiovascular effects in vitro of aqueous extract of wild strawberry (Fragaria vesca, L.) leaves. Phytomedicine 16:462–469

    Article  CAS  PubMed  Google Scholar 

  42. Yildirim AB, Turker AU (2014) Effects of regeneration enhancers on micropropagation of Fragaria vesca L. and phenolic content comparison of field-grown and in vitro-grown plant materials by liquid chromatography-electrospray tandem mass spectrometry (LC–ESI-MS/MS). Sci Hortic 169:169–178

    Article  CAS  Google Scholar 

  43. Sun J, Liu X, Yang T et al (2014) Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn. Food Chem 146:289–298

    Article  CAS  PubMed  Google Scholar 

  44. Dias M, Barros L, Oliveira M et al (2015) Phenolic profile and antioxidant properties of commercial and wild Fragaria vesca L. roots: a comparison between hydromethanolic and aqueous extracts. Ind Crop Prod 63:125–132

    Article  CAS  Google Scholar 

  45. Vennat B, Pourrat A, Pourrat H et al (1988) Procyanidins from the roots of Fragaria vesca: characterization and pharmacological approach. Chem Pharm Bull 36:828–833

    Article  CAS  Google Scholar 

  46. Liberal J, Costa G, Carmo A et al (2015) Chemical characterization and cytotoxic potential of an ellagitannin-enriched fraction from Fragaria vesca leaves. Arab J Chem

    Google Scholar 

  47. Vennat B, Pourrat A, Pourrat H et al (1988) Procyanidins from the root of Fragaria vesca: characterization and pharmacological approach. Chem Pharm Bull 36:828–833

    Article  CAS  Google Scholar 

  48. Abate-Pella D, Freund DM, Slovin JP et al (2017) An improved method for fast and selective separation of carotenoids by LC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 1067:34–37

    Article  CAS  PubMed  Google Scholar 

  49. Yildiz H, Ercisli S, Hegedus A et al (2014) Bioactive content and antioxidant characteristics of wild (Fragaria vesca L.) and cultivated strawberry (Fragaria x ananassa Duch.) fruits from Turkey. J Appl Bot Food Qual 87:274–278

    Google Scholar 

  50. Borah M, Ahmed S, Das S (2012) A comparative study of the antibacterial activity of the ethanolic extracts of Vitex negundo L., Fragaria vesca L., Terminalia arjuna and Citrus maxima. Asian J Pharm Boil Res 3:183–187

    Google Scholar 

  51. Tunón H, Olavsdotter C, Bohlin L (1995) Evaluation of anti-inflammatory activity of some Swedish medicinal plants. Inhibition of prostaglandin biosynthesis and PAF-induced exocytosis. J Ethnopharmacol 48:61–76

    Article  PubMed  Google Scholar 

  52. Pawlaczyk I, Lewik-Tsirigotis M, Capek P et al (2013) Effects of extraction condition on structural features and anticoagulant activity of F. vesca L. conjugates. Carbohydr Polym 92:741–750

    Article  CAS  PubMed  Google Scholar 

  53. Pawlaczyk I, Czerchawski L, Pilecki W et al (2009) Polyphenolic-polysaccharide compounds from selected medicinal plants of Asteraceae and Rosaceae families: chemical characterization and blood anticoagulant activity. Carbohydr Polym 77:568–575

    Article  CAS  Google Scholar 

  54. Goun EA, Petrichenko VM, Solodnikov SU et al (2002) Anticancer and antithrombin activity of Russian plants. J Ethnopharmacol 81:337–342

    Article  PubMed  Google Scholar 

  55. Beekwilder J, Jonker H, Meesters P et al (2005) Antioxidants in raspberry: on-line analysis links antioxidant activity to a diversity of individual metabolites. J Agric Food Chem 53:3313–3320

    Article  CAS  PubMed  Google Scholar 

  56. Burton-Freeman BM, Sandhu AK, Edirisinghe I (2016) Red raspberries and their bioactive polyphenols: cardiometabolic and neuronal health links. Adv Nutr 7:44–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Dossett M, Lee J, Finn CE (2011) Characterization of a novel anthocyanin profile in wild black raspberry mutants: an opportunity for studying the genetic control of pigment and color. J Funct Foods 3:207–214

    Article  CAS  Google Scholar 

  58. Torre LC, Barritt BH (1977) Quantitative evaluation of Rubus fruit anthocyanin pigments. J Food Sci 42:488–490

    Article  CAS  Google Scholar 

  59. Clifford MN, Scalbert A (2000) Ellagitannins – nature, occurrence and dietary burden. J Sci Food Agric 80:1118–1125

    Article  CAS  Google Scholar 

  60. Mullen W, Mcginn J, Lean M et al (2002) Ellagitannins flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. J Agric Food Chem 50:5191–5196

    Article  CAS  PubMed  Google Scholar 

  61. Kalt W, Forney CF, Martin A et al (1999) Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J Agr Food Chem 47:4638–4644

    Article  CAS  Google Scholar 

  62. Wang SY, Lin HS (2000) Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agr Food Chem 48:140–146

    Article  CAS  Google Scholar 

  63. Nikolaeva-Glomb L, Mukova L, Nikolova N et al (2014) In vitro antiviral activity of a series of wild berry fruit extracts against representatives of Picorna-, Orthomyxo- and Paramyxoviridae. Nat Prod Commun 9:51–54

    CAS  PubMed  Google Scholar 

  64. Cheplick S, Kwon YI, Bhowmik P et al (2007) Clonal variation in raspberry fruit phenolics and relevance for diabetes and hypertension management. J Food Biochem 31:656–679

    Article  CAS  Google Scholar 

  65. Bowen-Forbes CS, Zhang YJ, Nair MG (2010) Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J Food Compos Anal 23:554–560

    Article  CAS  Google Scholar 

  66. Mcdougall G, Ross H, Ikeji M et al (2008) Berry extracts exert different Antiproliferative effects against cervical and Colon Cancer cells grown in vitro. J Agric Food Chem 56:3016–3023

    Article  CAS  PubMed  Google Scholar 

  67. Ross HA, Mcdougall GJ, Stewart D (2007) Antiproliferative activity is predominantly associated with ellagitannins in raspberry extracts. Phytochemistry 68:218–228

    Article  CAS  PubMed  Google Scholar 

  68. Arencibia A, Vergara C, Quiroz K et al (2013) An approach for micropropagation of blueberry (Vaccinium corymbosum L.) plants mediated by temporary immersion bioreactors (TIBs). Am J Plant Sci 4:1022–1028

    Article  CAS  Google Scholar 

  69. Zafra-Stone S, Yasmin T, Bagchi M et al (2007) Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51:675–683

    Article  CAS  PubMed  Google Scholar 

  70. Morrow JD (2005) Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscl Throm Vasc Biol 25:279–286

    Article  CAS  Google Scholar 

  71. Sies H (1991) Oxidative stress – from basic research to clinical-application. Am J Med 91:31–38

    Article  Google Scholar 

  72. Jayaprakasam B, Vareed SK, Olson LK et al (2005) Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J Agr Food Chem 53:28–31

    Article  CAS  Google Scholar 

  73. Torronen R, Kolehmainen M, Sarkkinen E et al (2013) Berries reduce postprandial insulin responses to wheat and Rye breads in healthy women. J Nutr 143:430–436

    Article  CAS  PubMed  Google Scholar 

  74. Clegg ME, Pratt M, Meade CM et al (2011) The addition of raspberries and blueberries to a starch-based food does not alter the glycaemic response. Br J Nutr 106:335–338

    Article  CAS  PubMed  Google Scholar 

  75. Bradish CM, Perkins-Veazie P, Fernandez GE et al (2012) Comparison of flavonoid composition of red raspberries (Rubus idaeus L.) grown in the southern United States. J Agr Food Chem 60:5779–5786

    Article  CAS  Google Scholar 

  76. Giovanelli G, Buratti S (2009) Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem 112:903–908

    Article  CAS  Google Scholar 

  77. Pavlovic AV, Dabic DC, Momirovic NM et al (2013) Chemical composition of two different extracts of berries harvested in Serbia. J Agr Food Chem 61:4188–4194

    Article  CAS  Google Scholar 

  78. Jin P, Wang SY, Gao HY et al (2012) Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries. Food Chem 132:399–405

    Article  CAS  PubMed  Google Scholar 

  79. Mazza G, Cacace JE, Kay CD (2004) Methods of analysis for anthocyanins in plants and biological fluids. J AOAC Int 87:129–145

    CAS  PubMed  Google Scholar 

  80. Diaconeasa ZA, Florica R, Rugin DA et al (2014) HPLC/PDA–ESI/MS identification of phenolic acids, Flavonol glycosides and antioxidant potential in blueberry, blackberry, raspberries and cranberries. J Food Nutr Res 2:781–785

    Article  Google Scholar 

  81. Chen L, Xin XL, Zhang HC et al (2013) Phytochemical properties and antioxidant capacities of commercial raspberry varieties. J Funct Foods 5:508–515

    Article  CAS  Google Scholar 

  82. Borges G, Degeneve A, Mullen W et al (2010) Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J Agr Food Chem 58:3901–3909

    Article  CAS  Google Scholar 

  83. Çekiç Ç, Özgen M (2010) Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberries (Rubus idaeus L.). J Food Compos Anal 23:540–544

    Article  CAS  Google Scholar 

  84. Zhang L, Li JR, Hogan S et al (2010) Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition. Food Chem 119:592–599

    Article  CAS  Google Scholar 

  85. De Ancos B, Gonzalez EM, Cano MP (2000) Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J Agr Food Chem 48:4565–4570

    Article  CAS  Google Scholar 

  86. Maksimovic JJD, Milivojevic JM, Poledica MM et al (2013) Profiling antioxidant activity of two primocane fruiting red raspberry cultivars (Autumn bliss and polka). J Food Compos Anal 31:173–179

    Article  CAS  Google Scholar 

  87. Bobinaite R, Viskelis P, Venskutonis PR (2012) Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem 132:1495–1501

    Article  CAS  PubMed  Google Scholar 

  88. Carvalho E, Franceschi P, Feller A et al (2016) Discovery of A-type procyanidin dimers in yellow raspberries by untargeted metabolomics and correlation based data analysis. Metabolomics 12:144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Fernandes De Oliveira AM, Sousa Pinheiro L, Souto Pereira CK et al (2012) Total phenolic content and antioxidant activity of some Malvaceae Family species. Antioxidants 1:33–43

    Article  CAS  PubMed  Google Scholar 

  90. Goto T, Teraminami A, Lee JY et al (2012) Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese-diabetic mice. J Nutr Biochem 23:768–776

    Article  CAS  PubMed  Google Scholar 

  91. Gudej J, Tomczyk M (2004) Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Arch Pharm Res 27:1114–1119

    Article  CAS  PubMed  Google Scholar 

  92. De Pascual-Teresa S, Moreno DA, García-Viguera C (2010) Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 11:1679–1703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Dobson P, Graham J, Stewart D et al (2012) Over-seasons analysis of quantitative trait loci affecting phenolic content and antioxidant capacity in raspberry. J Agr Food Chem 60:5360–5366

    Article  CAS  Google Scholar 

  94. Riihinen K, Jaakola L, Karenlampi S et al (2008) Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and ‘northblue’ blueberry (Vaccinium corymbosum x V. angustifolium). Food Chem 110:156–160

    Article  CAS  PubMed  Google Scholar 

  95. Afrin S, Giampieri F, Gasparrini M et al (2016) Chemopreventive and therapeutic effects of edible berries: a focus on Colon Cancer prevention and treatment. Molecules 21

    Google Scholar 

  96. Del Rio D, Rodriguez-Mateos A, Spencer JPE et al (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18:1818–1892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Tian Y, Liimatainen J, Alanne AL et al (2017) Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem 220:266–281

    Article  CAS  PubMed  Google Scholar 

  98. Prior RL, Cao GH, Martin A et al (1998) Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agr Food Chem 46:2686–2693

    Article  CAS  Google Scholar 

  99. Fidaleo M, Lavecchia R, Zuorro A (2016) Extraction of bioactive polyphenols with high antioxidant activity from bilberry (Vaccinium myrtillus L.) processing waste. Orient J Chem 32:759–767

    Article  CAS  Google Scholar 

  100. Lyons MM, Yu CW, Toma RB et al (2003) Resveratrol in raw and baked blueberries and bilberries. J Agr Food Chem 51:5867–5870

    Article  CAS  Google Scholar 

  101. Rimando AM, Kalt W, Magee JB et al (2004) Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem 52:4713–4719

    Article  CAS  PubMed  Google Scholar 

  102. Zhao C, Giusti MM, Malik M et al (2004) Effects of commercial anthocyanin-rich extracts on colonic cancer and nontumorigenic colonic cell growth. J Agric Food Chem 52:6122–6128

    Article  CAS  PubMed  Google Scholar 

  103. Canter PH, Ernst E (2004) Anthocyanosides of Vaccinium myrtillus (bilberry) for night vision – a systematic review of placebo-controlled trials. Surv Ophthalmol 49:38–50

    Article  PubMed  Google Scholar 

  104. Rodrigo R, Gil D, Miranda-Merchak A et al (2012) Antihypertensive role of polyphenols. Adv Clin Chem 58:225–254

    Article  CAS  PubMed  Google Scholar 

  105. Detre Z, Jellinek H, Miskulin M et al (1986) Studies on vascular-permeability in hypertension – action of Anthocyanosides. Clin Physiol Bioch 4:143–149

    CAS  Google Scholar 

  106. Uleberg E, Rohloff J, Jaakola L et al (2012) Effects of temperature and photoperiod on yield and chemical composition of northern and southern clones of bilberry (Vaccinium myrtillus L.). J Agr Food Chem 60:10406–10414

    Article  CAS  Google Scholar 

  107. Laaksonen O, Sandell M, Kallio H (2010) Chemical factors contributing to orosensory profiles of bilberry (Vaccinium myrtillus) fractions. Eur Food Res Technol 231:271–285

    Article  CAS  Google Scholar 

  108. Phillips MM, Case RJ, Rimmer CA et al (2010) Determination of organic acids in Vaccinium berry standard reference materials. Anal Bioanal Chem 398:425–434

    Article  CAS  PubMed  Google Scholar 

  109. Maatta-Riihinen KR, Kamal-Eldin A, Mattila PH et al (2004) Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J Agr Food Chem 52:4477–4486

    Article  CAS  Google Scholar 

  110. Kahkonen MP, Heinamaki J, Ollilainen V et al (2003) Berry anthocyanins: isolation, identification and antioxidant activities. J Sci Food Agric 83:1403–1411

    Article  CAS  Google Scholar 

  111. Jaakola L, Maatta-Riihinen K, Karenlampi S et al (2004) Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218:721–728

    Article  CAS  PubMed  Google Scholar 

  112. Zorenc Z, Veberic R, Slatnar A et al (2017) A wild ‘albino’ bilberry (Vaccinium myrtillus L.) from Slovenia shows three bottlenecks in the anthocyanin pathway and significant differences in the expression of several regulatory genes compared to the common blue berry type. PLoS One 12:e0190246-e0190246

    Article  CAS  Google Scholar 

  113. Mikulic-Petkovsek M, Schmitzer V, Slatnar A et al (2015) A comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at different locations. J Sci Food Agric 95:776–785

    Article  CAS  PubMed  Google Scholar 

  114. Wang H, Cao GH, Prior RL (1996) Total antioxidant capacity of fruits. J Agr Food Chem 44:701–705

    Article  CAS  Google Scholar 

  115. Lacombe A, Wu VC, White J et al (2012) The antimicrobial properties of the lowbush blueberry (Vaccinium angustifolium) fractional components against foodborne pathogens and the conservation of probiotic Lactobacillus rhamnosus. Food Microbiol 30:124–131

    Article  CAS  PubMed  Google Scholar 

  116. Das Q, Islam MR, Marcone MF et al (2017) Potential of berry extracts to control foodborne pathogens. Food Control 73:650–662

    Article  CAS  Google Scholar 

  117. Lila MA (2008) Interactions between flavonoids that benefit human health. In: Winefield C, Davies K, Gould K (eds) Anthocyanins. Springer, New York

    Google Scholar 

  118. Salvayre R, Braquet P, Perruchot T et al (1982) Flavonoids and bioflavonoids. Elsevier, Amsterdam

    Google Scholar 

  119. Acquaviva R, Russo A, Galvano F et al (2003) Cyanidin and cyanidin 3-O-beta-D-glucoside as DNA cleavage protectors and antioxidants. Cell Biol Toxicol 19:243–252

    Article  CAS  PubMed  Google Scholar 

  120. Martín-Aragón S, Basabe B, Benedí JM et al (1998) Antioxidant action of Vaccinium myrtillus L. Phytother Res 12:S104–S106

    Article  Google Scholar 

  121. Martín-Aragón S, Basabe B, Benedí JM et al (1999) In vitro and in vivo antioxidant properties of Vaccinium myrtillus. Pharm Biol 37:109–113

    Article  Google Scholar 

  122. Laplaud PM, Lelubre A, Chapman MJ (1997) Antioxidant action of Vaccinium myrtillus extract on human low density lipoproteins in vitro: initial observations. Fundam Clin Pharmacol 11:35–40

    Article  CAS  PubMed  Google Scholar 

  123. Rasetti MF, Caruso D, Galli G et al (1997) Extracts of Ginkgo biloba L. leaves and Vaccinium myrtillus L. fruits prevent photo induced oxidation of low density lipoprotein cholesterol. Phytomedicine 3:335–338

    Article  CAS  PubMed  Google Scholar 

  124. Ichiyanagi T, Hatano Y, Matsugo S et al (2004) Kinetic comparisons of anthocyanin reactivities towards 2,2′-azobis(2-amidinopropane) (AAPH) radicals, hydrogen peroxide and tert-buthylhydroperoxide by capillary zone electrophoresis. Chem Pharm Bull (Tokyo) 52:434–438

    Article  CAS  Google Scholar 

  125. Sparrow JR, Vollmer-Snarr HR, Zhou JL et al (2003) A2E-epoxides damage DNA in retinal pigment epithelial cells – vitamin E and other antioxidants inhibit A2E-epoxide formation. J Biol Chem 278:18207–18213

    Article  CAS  PubMed  Google Scholar 

  126. Cluzel C, Bastide P, Wegman R et al (1970) Enzymatic activities of retina and anthocyanoside extracts of Vaccinium myrtillus (lactate dehydrogenase, alpha-hydroxybutyrate dehydrogenase, 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, alpha-glycerophosphate dehydrogenase, 5-nucleotidase, phosphoglucose isomerase). Biochem Pharmacol 19:2295–2302

    Article  CAS  PubMed  Google Scholar 

  127. Steigerwalt RD, Gianni B, Paolo M et al (2008) Effects of Mirtogenol (R) on ocular blood flow and intraocular hypertension in asymptomatic subjects. Mol Vis 14:1288–1292

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Sarma AD, Sharma R (1999) Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage. Phytochemistry 52:1313–1318

    Article  CAS  Google Scholar 

  129. Yao N, Lan F, He RR et al (2010) Protective effects of bilberry (Vaccinium myrtillus L.) extract against endotoxin-induced uveitis in mice. J Agr Food Chem 58:4731–4736

    Article  CAS  Google Scholar 

  130. Mauray A, Felgines C, Morand C et al (2012) Bilberry anthocyanin-rich extract alters expression of genes related to atherosclerosis development in aorta of apo E-deficient mice. Nutr Metab Cardiovasc Dis 22:72–80

    Article  CAS  PubMed  Google Scholar 

  131. Jonadet M, Meunier MT, Bastide J et al (1983) Anthocyanosides extracted from Vitis vinifera, Vaccinium myrtillus and Pinus maritimus. I. Elastase-inhibiting activities in vitro. II. Compared angioprotective activities in vivo. J Pharm Belg 38:41–46

    CAS  PubMed  Google Scholar 

  132. Boniface R, Miskulin M, Robert L et al (1985) Pharmacological properties of myrtillus anthocyanosides: correlation with results of treatment of diabetic microangiopathy. In: Farkas L, Gábor M, Kallay F (eds) Flavonoids and bioflavonoids. Elsevier, Amsterdam

    Google Scholar 

  133. Salmona M, Masturzo P, Cini M et al (1990) In: Das NP (ed) Flavonoids in biology and medicine III: current issues in flavonoids research, National University of Singapore, Singapore, pp 475–480

    Google Scholar 

  134. Mian E, Curri SB, Lietti A et al (1977) Anthocyanosides and the walls of the microvessels: further aspects of the mechanism of action of their protective effect in syndromes due to abnormal capillary fragility. Minerva Med 68:3565–3581

    CAS  PubMed  Google Scholar 

  135. Colantuoni A, Bertuglia S, Magistretti MJ et al (1991) Effects of Vaccinium Myrtillus anthocyanosides on arterial vasomotion. Arzneimittelforschung 41:905–909

    CAS  PubMed  Google Scholar 

  136. Bunea A, Rugina DO, Pintea AM et al (2011) Comparative polyphenolic content and antioxidant activities of some wild and cultivated blueberries from Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39:70

    Article  CAS  Google Scholar 

  137. Boycheva R, Stoyanova N, Domozetova D et al (2009) Genetic resources of small fruit crops in Bulgaria. I Balkan Symposium on Fruit Growing 825:103–109

    Google Scholar 

  138. Prencipe FP, Bruni R, Guerrini A et al (2014) Metabolite profiling of polyphenols in Vaccinium berries and determination of their chemopreventive properties. J Pharm Biomed Anal 89:257–267

    Article  CAS  PubMed  Google Scholar 

  139. Stanoeva JP, Stefova M, Andonovska KB et al (2017) Phenolics and mineral content in bilberry and bog bilberry from Macedonia. Int J Food Prop 20:S863–S883

    Article  CAS  Google Scholar 

  140. Martz F, Jaakola L, Julkunen-Tiitto R et al (2010) Phenolic composition and antioxidant capacity of bilberry (Vaccinium myrtillus) leaves in northern Europe following foliar development and along environmental gradients. J Chem Ecol 36:1017–1028

    Article  CAS  PubMed  Google Scholar 

  141. Liu PZ, Lindstedt A, Markkinen N et al (2014) Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.). J Agr Food Chem 62:12015–12026

    Article  CAS  Google Scholar 

  142. Mikulic-Petkovsek M, Slatnar A, Stampar F et al (2012) HPLC-MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem 135:2138–2146

    Article  CAS  PubMed  Google Scholar 

  143. Jovancevic M, Balijagic J, Menkovic N et al (2011) Analysis of phenolic compounds in wild populations of bilberry (Vaccinium myrtillus L.) from Montenegro. J Med Plants Res 5:910–914

    CAS  Google Scholar 

  144. Mikulic-Petkovsek M, Schmitzer V, Slatnar A et al (2012) Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J Food Sci 77:C1064–C1070

    Article  CAS  PubMed  Google Scholar 

  145. Marinova D, Ribarova F (2007) HPLC determination of carotenoids in Bulgarian berries. J Food Compos Anal 20:370–374

    Article  CAS  Google Scholar 

  146. Szakiel A, Pączkowski C, Huttunen S (2012) Triterpenoid content of berries and leaves of bilberry Vaccinium myrtillus from Finland and Poland. J Agr Food Chem 60:11839–11849

    Article  CAS  Google Scholar 

  147. Manganaris GA, Goulas V, Vicente AR et al (2014) Berry antioxidants: small fruits providing large benefits. J Sci Food Agric 94:825–833

    Article  CAS  PubMed  Google Scholar 

  148. Paredes-Lopez O, Cervantes-Ceja ML, Vigna-Perez M et al (2010) Berries: improving human health and healthy aging, and promoting quality life-a review. Plant Foods Hum Nutr 65:299–308

    Article  CAS  PubMed  Google Scholar 

  149. Vyas P, Kalidindi S, Chibrikova L et al (2013) Chemical analysis and effect of blueberry and lingonberry fruits and leaves against glutamate-mediated excitotoxicity. J Agric Food Chem 61:7769–7776

    Article  CAS  PubMed  Google Scholar 

  150. Zushang S (2012) Anthocyanins and flavonoids of Vaccinium L. Pharm Crops 3:7–37

    Article  Google Scholar 

  151. Ehala S, Vaher M, Kaljurand M (2005) Characterization of phenolic profiles of northern European berries by capillary electrophoresis and determination of their antioxidant activity. J Agr Food Chem 53:6484–6490

    Article  CAS  Google Scholar 

  152. Hakkinen S, Heinonen M, Karenlampi S et al (1999) Screening of selected flavonoids and phenolic acids in 19 berries. Food Res Int 32:345–353

    Article  CAS  Google Scholar 

  153. Latti AK, Riihinen KR, Jaakola L (2011) Phenolic compounds in berries and flowers of a natural hybrid between bilberry and lingonberry (Vaccinium x intermedium Ruthe). Phytochemistry 72:810–815

    Article  CAS  PubMed  Google Scholar 

  154. Pan YF, Qu WJ, Li JG et al (2005) Qualitative and quantitative analysis of flavonoid aglycones from fruit residue of Vaccinium vitis-idaea L. by HPLC. Nat Prod Res Develop 17:642–644

    CAS  Google Scholar 

  155. Andersen ØM (1985) Chromatographic separation of anthocyanins in cowberry (lingonberry) Vaccinium vitis-idaea L. J Food Sci 50:1230–1232

    Article  CAS  Google Scholar 

  156. Raudone L, Vilkickyte G, Pitkauskaite L et al (2019) Antioxidant activities of Vaccinium vitis-idaea L. leaves within cultivars and their phenolic compounds. Molecules 24:844

    Article  PubMed Central  CAS  Google Scholar 

  157. Bujor OC, Ginies C, Popa VI et al (2018) Phenolic compounds and antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) leaf, stem and fruit at different harvest periods. Food Chem 252:356–365

    Article  CAS  PubMed  Google Scholar 

  158. Ek S, Kartimo H, Mattila S et al (2006) Characterization of phenolic compounds from lingonberry (Vaccinium vitis-idaea). J Agr Food Chem 54:9834–9842

    Article  CAS  Google Scholar 

  159. Szakiel A, Mroczek A (2007) Distribution of triterpene acids and their derivatives in organs of cowberry (Vaccinium vitis-idaea L.) plant. Acta Biochim Pol 54:733–740

    Article  CAS  PubMed  Google Scholar 

  160. Vollmannová A, Tomáš J, Urminská D et al (2009) Content of bioactive components in chosen cultivars of cranberries (Vaccinium vitis-idaea L.). Czech J Food Sci 27:S248–S251

    Article  Google Scholar 

  161. Laslo E, Köbölkuti Z (2017) Total phenol content and antimicrobial activity of lingonberry (Vaccinium vitis-idaea L.) from several areas in the eastern Carpathians. Notulae Scientia Biologicae 9:77–83

    Article  CAS  Google Scholar 

  162. Ross K, Godfrey D, Fukumoto L (2015) The chemical composition, antioxidant activity and α-glucosidase inhibitory activity of water-extractable polysaccharide conjugates from northern Manitoba lingonberry. Cogent Food Agricult 1:1–19

    Google Scholar 

  163. Vyas P, Curran NH, Igamberdiev AU et al (2015) Antioxidant properties of lingonberry (Vaccinium vitis-idaea L.) leaves within a set of wild clones and cultivars. Can J Plant Sci 95:663–669

    Article  CAS  Google Scholar 

  164. Dincheva I, Badjakov I (2016) Assessment of the anthocyanin variation in Bulgarian bilberry (Vaccinium myrtillus L) and lingonberry (Vaccinium vitis-idaea L). Int J Med Pharm Sci 6:39–49

    Google Scholar 

  165. Drozdz P, Seziene V, Pyrzynska K (2017) Phytochemical properties and antioxidant activities of extracts from wild blueberries and lingonberries. Plant Foods Hum Nutr 72:360–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Eid HM, Ouchfoun M, Brault A et al (2014) Lingonberry (Vaccinium vitis-idaea L.) exhibits antidiabetic activities in a mouse model of diet-induced obesity. Evid-Based Compl Alt 2014:645812

    Article  Google Scholar 

  167. Kylli P, Nohynek L, Puupponen-Pimia R et al (2011) Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium microcarpon) Proanthocyanidins: isolation, identification, and bioactivities. J Agr Food Chem 59:3373–3384

    Article  CAS  Google Scholar 

  168. Su Z (2012) Anthocyanins and flavonoids of Vaccinium L. Pharm Crops 3:7–37

    Article  CAS  Google Scholar 

  169. Angelova S, Ivanova S, Trifonova I et al (2019) Vaccinium vitis-idaea L., origin from Bulgaria indicate in vitro antitumor effect on human cervical and breast cancer cells. Am Sci Res J Eng Technol Sci (ASRJETS) 56:104–112

    Google Scholar 

  170. Roman I, Puică C, Toma V (2014) The effect of Vaccinium vitis idaea L. extract administration on kidney structure and function in alcohol intoxicated rats. Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii 24:363–367

    Google Scholar 

  171. Karcheva-Bahchevanska D, Lukova P, Nikolova M et al (2017) Therapeutic effects of anthocyanins from Vaccinium genus L. Int J Med Res Pharm 4:4–19

    Google Scholar 

  172. Ho KY, Tsai CC, Huang JS et al (2001) Antimicrobial activity of tannin components from Vaccinium vitis-idaea L. J Pharm Pharmacol 53:187–191

    Article  CAS  PubMed  Google Scholar 

  173. Cioch M, Satora P, Skotniczny M et al (2017) Characterisation of antimicrobial properties of extracts of selected medicinal plants. Pol J Microbiol 66:463–472

    Article  PubMed  Google Scholar 

  174. Tsemenko KV (2018) Antibacterial activity of phytosubstants from Vaccinium vitis idaea L leaves. Annals Mechnikov Institute 3:23–26

    Google Scholar 

  175. Bhullar KS, Rupasinghe HPV (2015) Partridgeberry polyphenols protect primary cortical and hippocampal neurons against beta-amyloid toxicity. Food Res Int 74:237–249

    Article  CAS  PubMed  Google Scholar 

  176. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Article  Google Scholar 

  177. Graham J, Smith K, Woodhead M et al (2002) Development and use of simple sequence repeat SSR markers in Rubus species. Mol Ecol Notes 2:250–252

    Article  CAS  Google Scholar 

  178. Graham J, Smith K, Mackenzie K et al (2004) The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor Appl Genet 109:740–749

    Article  CAS  PubMed  Google Scholar 

  179. Graham J, Smith K, Tierney I et al (2006) Mapping gene H controlling cane pubescence in raspberry and its association with resistance to cane botrytis and spur blight, rust and cane spot. Theor Appl Genet 112:818–831

    Article  CAS  PubMed  Google Scholar 

  180. Monfort A, Vilanova S, Davis TM et al (2006) A new set of polymorphic simple sequence repeat (SSR) markers from a wild strawberry (Fragaria vesca) are transferable to other diploid Fragaria species and to Fragaria × ananassa. Mol Ecol Notes 6:197–200

    Article  CAS  Google Scholar 

  181. Hadonou AM, Sargent DJ, Wilson F et al (2004) Development of microsatellite markers in Fragaria, their use in genetic diversity analysis, and their potential for genetic linkage mapping. Genome 47:429–438

    Article  CAS  PubMed  Google Scholar 

  182. Boches PS, Bassil NV, Rowland LJ (2005) Microsatellite markers for Vaccinium from EST and genomic libraries. Mol Ecol Notes 5:657–660

    Article  CAS  Google Scholar 

  183. Hilmarsson HS, Hytonen T, Isobe S et al (2017) Population genetic analysis of a global collection of Fragaria vesca using microsatellite markers. PLoS One 12:e0183384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  184. Honjo M, Nunome T, Kataoka S et al (2011) Strawberry cultivar identification based on hypervariable SSR markers. Breed Sci 61:420–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Badjakov I, Todorovska E, Boicheva R et al (2005) Assessment of genetic diversity in bulgarian raspberry germplasm collection by microsatellite markers (SSR). Biotchnol Biotchnol Equip 19:43–47

    Article  CAS  Google Scholar 

  186. Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Biswas A, Melmaiee K, Elavarthi S et al (2019) Characterization of strawberry (Fragaria spp.) accessions by genotyping with SSR markers and phenotyping by leaf antioxidant and trichome analysis. Sci Hortic 256:108561

    Article  Google Scholar 

  188. Albert T, Raspe O, Jacquemart AL (2003) Clonal structure in Vaccinium myrtillus L. revealed by RAPD and AFLP markers. Int J Plant Sci 164:649–655

    Article  CAS  Google Scholar 

  189. Balsdon JL, Smith TW, Lundholm JT (2011) Phenotypic and genotypic differentiation of Vaccinium vitis-idaea between coastal barrens and forests in Nova Scotia, Canada. Botany 89:147–155

    Article  Google Scholar 

  190. Debnath SC (2005) Differentiation of Vaccinium cultivars and wild clones using RAPD markers. J Plant Biochem Biotechnol 14:173–177

    Article  Google Scholar 

  191. Debnath SC (2006) An assessment of the genetic diversity within a collection of wild cranberry (Vaccinium macrocarpon Ait.) clones with RAPD-PCR. Genet Resour Crop Evol 54:509–517

    Article  CAS  Google Scholar 

  192. Debnath SC (2007) Inter simple sequence repeat (ISSR) to assess genetic diversity within a collection of wild lingonberry (Vaccinium vitis-idaea L.) clones. Can J Plant Sci 87:337–344

    Article  CAS  Google Scholar 

  193. Debnath SC (2009) Development of ISSR markers for genetic diversity studies in Vaccinium angustifolium. Nord J Bot 27:141–148

    Article  Google Scholar 

  194. Simpson CG, Cullen DW, Hackett CA et al (2017) Mapping and expression of genes associated with raspberry fruit ripening and softening. Theor Appl Genet 130:557–572

    Article  CAS  PubMed  Google Scholar 

  195. Graham J, Smith K, Mccallum S et al (2015) Towards an understanding of the control of ‘crumbly’ fruit in red raspberry. Springerplus 4:223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  196. Graham J, Hackett CA, Smith K et al (2014) Genetic and environmental regulation of plant architectural traits and opportunities for pest control in raspberry. Ann Appl Biol 165:318–328

    Article  Google Scholar 

  197. Paterson A, Kassim A, Mccallum S et al (2013) Environmental and seasonal influences on red raspberry flavour volatiles and identification of quantitative trait loci (QTL) and candidate genes. Theor Appl Genet 126:33–48

    Article  CAS  PubMed  Google Scholar 

  198. Woodhead M, Weir A, Smith K et al (2010) Functional markers for red raspberry. J Amer Soc Hort Sci 135:418–427

    Article  Google Scholar 

  199. Graham J, Hackett CA, Smith K et al (2011) Towards an understanding of the nature of resistance to Phytophthora root rot in red raspberry. Theor Appl Genet 123:585–601

    Article  CAS  PubMed  Google Scholar 

  200. Mccallum S, Woodhead M, Hackett CA et al (2010) Genetic and environmental effects influencing fruit colour and QTL analysis in raspberry. Theor Appl Genet 121:611–627

    Article  CAS  PubMed  Google Scholar 

  201. Graham J, Hackett CA, Smith K et al (2009) Mapping QTLs for developmental traits in raspberry from bud break to ripe fruit. Theor Appl Genet 118:1143–1155

    Article  CAS  PubMed  Google Scholar 

  202. Kassim A, Poette J, Paterson A et al (2009) Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traits loci (QTL). Mol Nutr Food Res 53:625–634

    Article  CAS  PubMed  Google Scholar 

  203. Cockerton HM, Vickerstaff RJ, Karlstrom A et al (2018) Identification of powdery mildew resistance QTL in strawberry (Fragaria x ananassa). Theor Appl Genet 131:1995–2007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Samad S, Kurokura T, Koskela E et al (2017) Additive QTLs on three chromosomes control flowering time in woodland strawberry (Fragaria vesca L.). Horticulture Res 4:17020

    Article  CAS  Google Scholar 

  205. Hackett CA, Milne L, Smith K et al (2018) Enhancement of Glen Moy x Latham raspberry linkage map using GbS to further understand control of developmental processes leading to fruit ripening. BMC Genet 19(59):59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  206. Alam Z, Roncal J, Pena-Castillo L (2018) Genetic variation associated with healthy traits and environmental conditions in Vaccinium vitis-idaea. BMC Genomics 19:4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  207. Hall HK, Hummer KE, Jamieson AR et al. (2009) Raspberry breeding. In: Janick J (ed) Plant breeding reviews 32 Hoboken Wiley-Blackwell

    Google Scholar 

  208. Graham J, Hein I, Powell W (2007) Raspberry. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 4. Springer, Berlin

    Google Scholar 

  209. Jennings SN, Ferguson L, Brennan R (2008) New prospects from the Scottish raspberry breeding programme. Acta Hort:203–206

    Google Scholar 

  210. Schleiden MS (1838) Beiträge zur Phytogenesis. In: Müller J (ed) Archiv für Anatomie, Physiologie und wissenschaftliche Medicin, Berlin

    Google Scholar 

  211. Schwann T (1839) Mikroskopische Untersuchungen under die Ubereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen. Verlag der Sander’schen Buchhandlung, Berlin

    Google Scholar 

  212. Haberlandt G (1902) Culturversuche mit isolierten Pflanzenzellen. Sitz-Ber Mat Nat KI Kais Akad Wiss Wien 111:69–92

    Google Scholar 

  213. Quak F (1961) Heat treatment and substances inhibiting virus multiplication in meristem culture to obtain virus-free plant. Adv Hortic Sci 1:144–148

    Google Scholar 

  214. Boxus PH (1974) The production of strawberry plants by in vitro micro-propagation. J Hortic Sci 49:209–210

    Article  CAS  Google Scholar 

  215. Druart P (1980) Plantlet regeneration from root callus of different Prunus species. Sci Hortic 12:339–342

    Article  CAS  Google Scholar 

  216. Kane ME (2005) Shoot culture procedures. In: Trigiano RN, Gray DJ (eds) Plant development and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  217. Debergh PC, Maene LJ (1981) A scheme for commercial propagation of ornamental plants by tissue culture. Sci Hortic 14:335–345

    Article  Google Scholar 

  218. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  219. De Klerk GJ (2002) Rooting of microcuttings: theory and practice. In Vitro Cell Dev Biol Plant 38:415–422

    Article  CAS  Google Scholar 

  220. De Klerk GJ, Van Der Krieken W, De Jong JC (1999) The formation of adventitious roots: new concepts, new possibilities (Review). In Vitro Cell Dev Biol Plant 35:189–199

    Article  Google Scholar 

  221. Hazarika BN (2003) Acclimatization of tissue-cultured plants. Cull Sci 85:1704–1712

    CAS  Google Scholar 

  222. Zimmerman RH (1981) Micropropagation of fruit plants. Acta Hortic 120:217–222

    Article  Google Scholar 

  223. Passey AJ, Barrett KJ, James DJ (2003) Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria x ananassa Duch.) using a range of explant types. Plant Cell Rep 21:397–401

    Article  CAS  PubMed  Google Scholar 

  224. Schween G, Schwenkel HG (2003) Effect of genotype on callus induction, shoot regeneration, and phenotypic stability of regenerated plants in the greenhouse of Primula ssp. Plant Cell Tissue Organ Cult 72(1):53–61

    Article  CAS  Google Scholar 

  225. Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in Cultures Grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  226. Aubert B, Boutigny D, Gaillard JM et al (2001) Measurement of branching fractions and search for CP-violating charge asymmetries in charmless two-body B decays into pions and kaons. Phys Rev Lett 87:151802

    Article  CAS  PubMed  Google Scholar 

  227. Kordestani GK, Karami O (2008) Picloram-induced somatic embryogenesis in leaves of strawberry (Fragaria ananassa L.). Acta Biol Cracov Ser Bot 50:69–72

    Google Scholar 

  228. Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35

    Article  CAS  Google Scholar 

  229. Pallavi CM, Rekha R, Neelambika TM (2011) Indirect somatic embryogenesis from petiole segment in strawberry cv. Sweet Charlie. Indian J Hortic 68:24–27

    Google Scholar 

  230. Donnoli R, Sunseri F, Martelli G et al (2001) Somatic embryogenesis, plant regeneration and genetic transformation in Fragaria spp. Acta Hortic (Proceedings of the 4th International Symposium on in Vitro Culture and Horticultural Breeding) 560:235–239

    CAS  Google Scholar 

  231. Ahmad I, Johansson S, Andrade G et al (2011) Somatic embryogenesis for mass propagation of elite spruce families: effect of storage time on somatic embryogenesis initiation. BMC Proc 5:P127–P127

    Article  PubMed Central  Google Scholar 

  232. Pintos B, Bueno MA, Cuenca B et al (2008) Synthetic seed production from encapsulated somatic embryos of cork oak (Quercus suber L.) and automated growth monitoring. Plant Cell Tiss Org 95:217–225

    Article  Google Scholar 

  233. Li XQ, Krasnyanski SF, Korban SS (2002) Optimization of the uidA gene transfer into somatic embryos of rose via agrobacterium tumefaciens. Plant Physiol Bioch 40:453–459

    Article  CAS  Google Scholar 

  234. Dhabhairavi PA (2012) Production and applications of artificial seeds: a review. Int Res J Biological Sci 1:74–78

    Google Scholar 

  235. Kamle M, Bajpai A, Chandra R et al (2011) Somatic embryogenesis for crop improvement. GERF Bulletin Biosci 2:54–59

    Google Scholar 

  236. Kaur P, Kothari SL (2004) In vitro culture of kodo millet: influence of 2,4-D and picloram in combination with kinetin on callus initiation and regeneration. Plant Cell Tissue Organ Cult 77:73–79

    Article  CAS  Google Scholar 

  237. Mendoza MG, Kaeppler HF (2002) Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cell Dev Biol-Plant 38:39–45

    Article  CAS  Google Scholar 

  238. Castillo AM, Egana B, Sanz JM et al (1998) Somatic embryogenesis and plant regeneration from barley cultivars grown in Spain. Plant Cell Rep 17:902–906

    Article  CAS  PubMed  Google Scholar 

  239. Merkle S, Parrott W, Flinn B (1995) Morphogenic aspects of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Springer, Dordrecht

    Google Scholar 

  240. Singh M, Chaturvedi R (2013) Somatic embryogenesis in neem (Azadirachta indica A. Juss.): Current status and biotechnological perspectives. In: Aslam J, Srivastava PS, Sharma MP (eds) Somatic embryogenesis and gene expression. Narosa Publishing House, New Delhi, pp 35–55

    Google Scholar 

  241. Zegzouti R, Arnould M-F, Favre J-M (2001) Histological investigation of the multiplication step in secondary somatic embryogenesis of Quercus robur L. Ann For Sci 58:681–690

    Article  Google Scholar 

  242. Ashakiran K, Chidambareswaran M, Govindasamy V (2011) Somatic embryogenesis for agrobacterium mediated transformation of tomato Solanum Lycopersicum. Int J Biotechnol Appl 3:72–79

    Article  Google Scholar 

  243. Ji A, Geng X, Zhang Y et al (2011) Advances in somatic embryogenesis research of horticultural plants. Am J Plant Sci 2:727–732

    Article  CAS  Google Scholar 

  244. Swapnil GW, Komal RP, Ramling HT et al (2017) Somatic embryogenesis in strawberry (Fragaria x ananassa) var. camarosa. Global J Bio Sci Biotechnol 6:309

    Google Scholar 

  245. Georgieva M, Kondakova V, Dragoyski K et al (2009) Comparative study of raspberry cv Balgarski Rubin propagated by classical and in vitro methods. J Pomol 43:81–86

    Google Scholar 

  246. Mozafari AA, Gerdakaneh M (2012) Influence of media and growth regulators on regeneration and morphological characteristics of strawberry cvs. Kurdistan and Merck (Fragaria x ananassa Duch.). Int J PlPhysiol Biochem 4:99–104

    CAS  Google Scholar 

  247. Tanziman Ara RKM, Karim R et al (2012) Callus induction and shoot regeneration in strawberry (Fragaria x ananassa Duch.). Int J Biosci 2:93–100

    Google Scholar 

  248. Litwinczuk W, Okototkiewicz E, Matyaszek I (2009) Development of in vitro shoot cultures of strawberry (Fragaria ananassa Duch.), Senga Sengana and Elsanta, under the influence of high doses of gibberellic acid. Folia Horticulture Turae 21:43–52

    Article  Google Scholar 

  249. Mir JI, Ahmed N, Rizwan R et al (2010) Micropropagation of strawberry (Fragaria x ananassa). Crop Improv 37:153–156

    Google Scholar 

  250. Debnath SC (2005) Strawberry sepal: another explant for thidiazuron-induced adventitious shoot regeneration. In Vitro Cell Dev-Pl 41:671–676

    Article  Google Scholar 

  251. Rugini E, Orlando R (1992) High efficiency shoot regeneration from calluses of strawberry (Fragaria ananassa Duch) stipules of in vitro cultures. J Hortic Sci 67:577–582

    Article  Google Scholar 

  252. Husaini AM, Abdin MZ (2008) Development of transgenic strawberry (Fragaria x ananassa Duch.) plants tolerant to salt stress. Plant Sci 174:446–455

    Article  CAS  Google Scholar 

  253. Hussaini AM, Abdin MZ (2007) Interaction effect of light, temperature and TDZ on the regeneration potential of leaf discs of Fragaria x ananassa Duch. In Vitro Cell Dev Biol-Pl 43:576–580

    Article  CAS  Google Scholar 

  254. Benmahioul B, Dorion NL, Kaid-Harche M et al (2012) Micropropagation and ex vitro rooting of pistachio (Pistacia vera L.). Plant Cell Tissue Org Cult 108(2):353–358

    Article  Google Scholar 

  255. Lebedev V, Arkaev M, Dremova M et al (2019) Effects of growth regulators and gelling agents on ex vitro rooting of raspberry. Plants Basel 8:3

    Article  CAS  Google Scholar 

  256. Bhojwani SS, Dantu PK (2013) Micropropagation. In: Bhojwani SS, Dantu PK (eds) Plant tissue culture: an introductory text. Springer, India

    Chapter  Google Scholar 

  257. Debnath SC (2006) Zeatin overcomes thidiazuron-induced inhibition of shoot elongation and promotes rooting in strawberry culture in vitro. J Hortic Sci Biotechnol 81:349–354

    Article  Google Scholar 

  258. Debnath SC (2007) Strategies to propagate Vaccinium nuclear stocks for the Canadian berry industry. Can J Plant Sci 87:911–922

    Article  CAS  Google Scholar 

  259. Debnath SC, Vyas P, Igamberdiev AU (2012) Characteristics of lingonberry plants propagated by in vitro and ex vitro propagation methods. In: International Society for Horticultural Science (ISHS). The Society, Leuven, pp 259–264

    Google Scholar 

  260. Cappelletti R, Sabbadini S, Mezzetti B (2016) The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Sci Hortic 207:117–124

    Article  CAS  Google Scholar 

  261. Ghosh A, Igamberdiev AU, Debnath SC (2018) Thidiazuron-induced somatic embryogenesis and changes of antioxidant properties in tissue cultures of half-high blueberry plants. Sci Rep 8:16978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  262. Kumar N, Reddy MP (2011) In vitro plant propagation: a review. J Forest Sci 27:61–72

    Google Scholar 

  263. Sowik I, Bielenin A, Michalczuk L (2001) In vitro testing of strawberry resistance to Verticillium dahliae and Phytophthora cactorum. Sci Hortic 88:31–40

    Article  Google Scholar 

  264. Cerovic R, Ruzic D (1989) Micropropagation of strawberry cvs cacanska rana and senga sengana, pomological-biochemical characteristics of micropropagated plants. In: International Society for Horticultural Science (ISHS). The Society, Leuven, pp 353–358

    Google Scholar 

  265. Karhu S, Hakala K (2002) Micropropagation of strawberry on the field. Acta Hortic 2:182

    Google Scholar 

  266. Zebrowska JI, Czernas J, Gawroonski J et al (2003) Suitable of strawberry (Fragaria x ananassa Duch) microplants to the field cultivation. Food Agri Env 1:190–193

    Google Scholar 

  267. Graham J (2005) Fragaria strawberries. In: Litz R (ed) Biotechnology of fruit and nut crop. CAB International, Wallingford

    Google Scholar 

  268. Jemmali A, Boxus P, Kinet JM (1992) Are strawberry plantlets arising from adventitious stipule buds also true to type? Acta Hortic 1992(319):171–176

    Article  Google Scholar 

  269. Jemmali A, Boxus P, Dekegel D et al (1994) Occurrence of spontaneous shoot regeneration on leaf stipules in relation to hyperflowering response in micropropagation strawberry plantlets. In Vitro Cell Dev Biol P1(30):192–195

    Article  Google Scholar 

  270. Boxus PH (1999) Micropropagation of strawberry via axillary shoot proliferation. In: Hall RD (ed) Plant cell culture protocols. Humana Press, Totowa

    Google Scholar 

  271. Biswas MK, Hossain M, Ahmed MB et al (2007) Multiple shoots regeneration of strawberry under various colour illuminations. Am Eurasian J Sci Res 2:133–135

    Google Scholar 

  272. Karim MR, Azis A, Krishna U et al (2011) In vitro response of strawberry (Fragaria x ananassa Dutch.) for callus induction and shoot regeneration. Int J Agron Agr Res 1:29–36

    Google Scholar 

  273. Lis EK (1993) Strawberry plants regeneration by organogenesis from peduncle and stolon segments. In: International Society for Horticultural Science (ISHS). The Society, Leuven, pp 435–438

    Google Scholar 

  274. Quesada MA, Martín-Pizarro C, García-Gago JA et al (2007) Transgenic strawberry: current status and future perspectives. Transgenic Plant J 1:280–288

    Google Scholar 

  275. Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119

    Article  CAS  Google Scholar 

  276. Georgieva M, Badjakov I, Dincheva I et al (2016) In vitro propagation of wild Bulgarian small berry fruits (bilberry, lingonberry, raspberry and strawberry). Bulg J Agric Sci 22:46–51

    Google Scholar 

  277. Werner S, Maschke RW, Eibl D et al (2018) Bioreactor Technology for Sustainable Production of plant cell-derived products. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems. Springer International Publishing, Cham

    Google Scholar 

  278. Steingroewer J, Bley T, Georgiev V et al (2013) Bioprocessing of differentiated plant in vitro systems. Eng Life Sci 13:26–38

    Article  CAS  Google Scholar 

  279. Camargo SS, Rufato L, Magro M et al (2019) Temporary immersion biorreators: efficient technique for the propagation of the Pircinque strawberry. Rev Bras Frutic 41

    Google Scholar 

  280. Ross S, Castillo A (2009) Mass propagation of Vaccinium corymbosum in bioreactors. Agrociencia Uruguay 13:1–8

    Google Scholar 

  281. Debnath SC (2007) A two-step procedure for in vitro multiplication of cloudberry (Rubus chamaemorus L.) shoots using bioreactor. Plant Cell Tissue Organ Cult 88:185–191

    Article  CAS  Google Scholar 

  282. Jansen CC, Prow NA, Webb CE et al (2009) Arboviruses isolated from mosquitoes collected from urban and peri-urban areas of eastern Australia. J Am Mosq Control Assoc 25:272–278

    Article  PubMed  Google Scholar 

  283. Georgiev V, Schumann A, Pavlov A et al (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14:607–621

    Article  CAS  Google Scholar 

  284. Debnath SC (2011) Adventitious shoot regeneration in a bioreactor system and EST-PCR based clonal fidelity in lowbush blueberry (Vaccinium angustifolium Ait.). Sci Hortic 128:124–130

    Article  CAS  Google Scholar 

  285. Debnath SC (2009) A scale-up system for lowbush blueberry micropropagation using a bioreactor. HortScience 44:1962

    Article  Google Scholar 

  286. Debnath S (2009) A scale-up system for lowbush blueberry micropropagation using a bioreactor. Hort Sci 44:1962–1966

    Article  Google Scholar 

  287. Debnath SC (2014) Bioreactor-induced adventitious shoot regeneration affects genotype-dependent morphology but maintains clonal fidelity in red raspberry. In Vitro Cell Dev Biol Plant 50:777–788

    Article  CAS  Google Scholar 

  288. Hanhineva K, Kokko H, Kärenlampi S (2005) Shoot regeneration from leaf explants of five strawberry (Fragaria × Ananassa) cultivars in temporary immersion bioreactor system. In Vitro Cell Dev Biol Plant 41:826

    Article  CAS  Google Scholar 

  289. Debnath SC (2008) Developing a scale-up system for the in vitro multiplication of thidiazuron-induced strawberry shoots using a bioreactor. Can J Plant Sci 88:737–746

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of this research by the Bulgarian National Science Fund and Bulgarian Ministry of Education and Science by contract DN 16/1–11.12.2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanas Pavlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Badjakov, I. et al. (2020). Bioreactor Technology for In Vitro Berry Plant Cultivation. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics