Skip to main content

Abstract

In the past few years, the synthesis and development of perovskite materials have been focused due to the excellent physiochemical properties of the perovskites. The organic-inorganic hybrid metal halide perovskites have been proven a most efficient light harvester or light absorber for the development of perovskite solar cells. The solar cells based on these organic-inorganic hybrid metal halide perovskites have led the power conversion efficiency to a level needed for commercialization which makes them superior among thin-film solar cells. In 2017, organic-inorganic hybrid metal halide perovskites have crossed the power conversion efficiency of 23% which is believed to be due to the long charge diffusion length, tunable bandgap, controlled electron/hole transport behavior, and high absorption coefficient. However, these perovskite solar cells suffer from serious drawbacks such as low stability and presence of highly toxic lead (Pb2+). Currently, the researchers have now focused to develop the strategies toward the fabrication of lead-free perovskite solar cells with high device stability and performance in aerobic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kitano M, Hara M (2010) Heterogeneous photocatalytic cleavage of water. J Mater Chem 20:627–641

    Article  CAS  Google Scholar 

  2. Ahmad K, Ansari SN, Natarajan K, Mobin SM (2019) A two-step modified deposition method based (CH3NH3)3Bi2I9 perovskite: lead free, highly stable and enhanced photovoltaic performance. Chem Electro Chem 6:1–8

    Google Scholar 

  3. Sum TC, Mathews N (2014) Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci 7:2518–2534

    Article  CAS  Google Scholar 

  4. Ahmad K, Mohammad A, Mathur P, Mobin SM (2016) Preparation of SrTiO3 perovskite decorated rGO and electrochemical detection of nitroaromatics. Electrochim Acta 215:435–446

    Article  CAS  Google Scholar 

  5. Reddy VS, Kaushik SC, Ranjan KR, Tyagi SK (2013) State-of-the-art of solar thermal power plants. Renew Sust Energ Rev 27:258–273

    Article  Google Scholar 

  6. Chen GY, Seo J, Yang CH, Prasad PN (2013) Nanochemistry and nanomaterials for photovoltaics. Chem Soc Rev 42:8304–8338

    Article  CAS  Google Scholar 

  7. O’Regan B, Grätzel M (1991) A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  8. Chen Y-Z, Wu R-J, Lin LY, Chang WC (2019) Novel synthesis of popcorn-like TiO2 light scatterers using a facile solution method for efficient dye-sensitized solar cells. J Power Sources 413:384–390

    Article  CAS  Google Scholar 

  9. Prabavathy N, Balasundaraprabhu R, Balaji RG, Malikaramage AU, Prasanna S, Sivakumaran K, Kumarad GRA, Rajapakse RMG, Velauthapillai D (2019) Investigations on the photo catalytic activity of calcium doped TiO2 photo electrode for enhanced efficiency of anthocyanins based dye sensitized solar cells. J Photochem Photobiol A Chem 377:43–57

    Article  CAS  Google Scholar 

  10. Motlak M, Hamza AM, Hammed MG, Barakat NAM (2019) Cd-doped TiO2 nanofibers as effective working electrode for the dye sensitized solar cells. Mater Lett 246:206–209

    Article  CAS  Google Scholar 

  11. Wang C-T, Wang W-P, Lin H-S (2018) Niobium and iron co-doped titania nanobelts for improving charge collection in dye-sensitized TiO2 solar cells. Ceram Int 44:18032–18038

    Article  CAS  Google Scholar 

  12. Shakir S, Abd-ur-Rehman HM, Yunus K, Iwamoto M, Periasamy V (2018) Fabrication of un-doped and magnesium doped TiO2 films by aerosol assisted chemical vapor deposition for dye sensitized solar cells. J Alloy Compound 737:740–747

    Article  CAS  Google Scholar 

  13. Hao NH, Gyawali G, Hoon JS, Sekino T, Lee SW (2018) Cr-doped TiO2 nanotubes with a double-layer model: an effective way to improve the efficiency of dye-sensitized solar cells. Appl Surf Sci 458:523–528

    Article  CAS  Google Scholar 

  14. Dong YX, Jin B, Lee SH, Wang XL, Jin EM, Jeong SM (2019) One-step hydrothermal synthesis of Ag decorated TiO2 nanoparticles for 2 dye-sensitized solar cell application. Renew Energy 135:1207–1212

    Article  CAS  Google Scholar 

  15. Zhang X, Liu F, Huang QL, Zhou G, Wang Z-S (2011) Dye-sensitized W-doped TiO2 solar cells with a tunable conduction band and suppressed charge recombination. J Phys Chem C 115:12665–12671

    Article  CAS  Google Scholar 

  16. Tran VA, Truong TT, Phan TAP, Nguyen TN, Huynh TV, Agrestic A, Pescetellic S, Le TK, Carlo AD, Lund T, Le S-N, Nguyen PT (2017) Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells. Appl Surf Sci 399:515–522

    Article  CAS  Google Scholar 

  17. Shalini S, Balasundaraprabhu R, Kumar TS, Muthukumarasamy N, Prasanna S, Sivakumaran K, Kannan MD (2018) Enhanced performance of sodium doped TiO2 nanorods based dye sensitized solar cells sensitized with extract from petals of Hibiscus sabdariffa (Roselle). Mater Lett 221:192–195

    Article  CAS  Google Scholar 

  18. Xiang P, Lv F, Xiao T, Jiang L, Tan X, Shu T (2018) Improved performance of quasi-solid-state dye-sensitized solar cells based on iodine-doped TiO2 spheres photoanodes. J Alloy Compound 741:1142–1147

    Article  CAS  Google Scholar 

  19. Ganesh RS, Navaneethan M, Ponnusamy S, Muthamizhchelvan C, Kawasaki S, Shimura Y, Hayakawa Y (2018) Enhanced photon collection of high surface area carbonate-doped mesoporous TiO2 nanospheres for dye sensitized solar cells applications. Mater Res Bull 101:353–362

    Article  CAS  Google Scholar 

  20. Lu WH, Chou C-S, Chen C-Y, Wu P (2017) Preparation of Zr-doped mesoporous TiO2 particles and their applications in the novel working electrode of a dye-sensitized solar cell. Adv Powder Technol 28:2186–2197

    Article  CAS  Google Scholar 

  21. Deng J, Wang M, Fang J, Song X, Yang Z, Yuan Z (2019) Synthesis of Zn-doped TiO2 Nano-particles using metal Ti and Zn as raw materials and application in quantum dot sensitized solar cells. J Alloy Compound 791:371–379

    Article  CAS  Google Scholar 

  22. Colombo A, Dragonetti C, Roberto D, Ugo R, Manfredi N, Manca P, Abbotto A, Giustina GD, Brusatin G (2019) A carbon doped anatase TiO2 as a promising semiconducting layer in Ru-dyes based dye-sensitized solar cells. Inorg Chim Acta 489:263–268

    Article  CAS  Google Scholar 

  23. Hajizadeh-Oghaz M (2019) Synthesis and characterization of Nb-La Co-doped TiO2 nanoparticles by sol-gel process for dye-sensitized solar cells. Ceram Int 45:6994–7000

    Article  CAS  Google Scholar 

  24. Ahmad K, Ansari SN, Natarajan K, Mobin SM (2018) Design and synthesis of 1D-polymeric chain based [(CH3NH3)3Bi2Cl9]n perovskite: a new light absorber material for lead free perovskite solar cells. ACS Appl Energy Mater 1:2405–2409

    Article  CAS  Google Scholar 

  25. Ahmad K, Mobin SM (2017) Graphene oxide based planar heterojunction perovskite solar cell under ambient condition. New J Chem 41:14253–14258

    Article  CAS  Google Scholar 

  26. Ahmad K, Mohammad A, Mobin SM (2017) Hydrothermally grown α-MnO2 nanorods as highly efficient low cost counter-electrode material for dye-sensitized solar cells and electrochemical sensing applications. Electrochim Acta 252:549–557

    Article  CAS  Google Scholar 

  27. Guo Q, Xu Y, Xiao B, Zhang B, Zhou E, Wang F, Bai Y, Hayat T, Alsaedi A, Tan Z (2017) Effect of energy alignment, electron mobility, and film morphology of perylene diimide based polymers as electron transport layer on the performance of perovskite solar cells. ACS Appl Mater Interfaces 9:10983–10991

    Article  CAS  Google Scholar 

  28. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  Google Scholar 

  29. Lin J, Hu J, Qiu C, Huang H, Chen L, Xie Y, Zhang Z, Lin H, Wang X (2019) In situ hydrothermal etching fabrication of CaTiO3 on TiO2 nanosheets with heterojunction effects to enhance CO2 adsorption and photocatalytic reduction. Catal Sci Technol 9:336–346

    Article  CAS  Google Scholar 

  30. Fergus JW (2017) Perovskite oxides for semiconductor-based gas sensors. Sensors Actuators B Chem 123:1169–1179

    Article  CAS  Google Scholar 

  31. Weber D (1978) CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z Naturforsch B 33:1443–1445

    Article  Google Scholar 

  32. Konstantakou M, Stergiopoulos T (2017) A critical review on tin halide perovskite solar cells. J Mater Chem A 5:11518–11549

    Article  CAS  Google Scholar 

  33. Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM (2014) High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater 26:1584–1589

    Article  CAS  Google Scholar 

  34. Wehrenfennig C, Liu M, Snaith HJ, Johnston MB, Herz LM (2014) Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx. Energy Environ Sci 7:2269–2275

    Article  CAS  Google Scholar 

  35. Gratzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13:838–842

    Article  CAS  Google Scholar 

  36. Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3:4088–4093

    Article  CAS  Google Scholar 

  37. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591

    Article  CAS  Google Scholar 

  38. Ke W, Fang G, Wang J, Qin P, Tao H, Lei H, Liu Q, Dai X, Zhao X (2014) Perovskite solar cell with an efficient TiO2 compact film. ACS Appl Mater Interfaces 6(18):15959–15965

    Article  CAS  Google Scholar 

  39. Ma J, Guo X, Zhou L, Lin Z, Zhang C, Yang Z, Lu G, Chang J, Hao Y (2018) Enhanced planar perovskite solar cell performance via contact passivation of TiO2/perovskite interface with NaCl doping approach. ACS Appl Energy Mater 1(8):3826–3834

    Article  CAS  Google Scholar 

  40. Guo Z, Liguo G, Zhang C, Xu Z, Ma T (2018) Low-temperature processed non-TiO2 electron selective layers for perovskite solar cells. J Mater Chem A 6:4572–4589

    Article  CAS  Google Scholar 

  41. Lv M, Lv W, Fang X, Sun P, Lin B, Zhang S, Xu X, Ding J, Yuan N (2016) Performance enhancement of perovskite solar cells with a modified TiO2 electron transport layer using Zn-based additives. RSC Adv 6:35044–35050

    Article  CAS  Google Scholar 

  42. Peng G, Wu J, Wu S, Xu X, Ellis JE, Xu G, Star A, Gao D (2016) Perovskite solar cells based on bottom-fused TiO2 nanocones. J Mater Chem A 4:1520–1530

    Article  CAS  Google Scholar 

  43. Liu D, Kelly TL (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics 8:133–138

    Article  CAS  Google Scholar 

  44. Jeong S, Seo S, Park H, Shin H (2019) Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%. Chem Commun 55:2433–2436

    Article  CAS  Google Scholar 

  45. Jung K-H, Seo J-Y, Lee S, Shin H, Park N-G (2017) Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2%. J Mater Chem A 5:24790–24803

    Article  CAS  Google Scholar 

  46. Wang S, Zhu Y, Liu B, Wang C, Ma R (2019) Introduction of carbon nanodots into SnO2 electron transport layer for efficient and UV stable planar perovskite solar cells. J Mater Chem A 7:5353–5362

    Article  CAS  Google Scholar 

  47. Ding B, Huang S-Y, Chu QQ, Li Y, Li C-X, Li C-J, Yang G-J (2018) Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J Mater Chem A 6:10233–10242

    Article  CAS  Google Scholar 

  48. Mali SS, Patil JV, Kim H, Hong CK (2018) Synthesis of SnO2 nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells. Nanoscale 10:8275–8284

    Article  CAS  Google Scholar 

  49. Zhong M, Liang Y, Zhang J, Wei Z, Li Q, Xu D (2019) Highly efficient flexible MAPbI3 solar cells with a fullerene derivative-modified SnO2layer as the electron transport layer. J Mater Chem A 7:6659–6664

    Article  CAS  Google Scholar 

  50. Mahmood K, Swain BS, Kirmani AR, Amassian A (2015) Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material. J Mater Chem A 3:9051–9057

    Article  CAS  Google Scholar 

  51. Jiang J, Wang S, Jia X, Fang X, Zhang S, Zhang J, Liu W, Ding J, Yuan N (2018) Totally room-temperature solution-processing method for fabricating flexible perovskite solar cells using an Nb2O5-TiO2 electron transport layer. RSC Adv 8:12823–12831

    Article  CAS  Google Scholar 

  52. Kulkarni A, Praveen CS, Sethi YA, Panmand RP, Arbuj SS, Naik SD, Ghule AV, Kale BB (2017) Nanostructured N-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton Trans 46:14859–14868

    Article  CAS  Google Scholar 

  53. Pérez-Tomas A, Xie H, Wang Z, Kim H-S, Shirley I, Turren-Cruz H-S, Morales-Melgares A, Saliba B, Tanenbaum D, Saliba M, Zakeeruddin SM, Gratzel M, Hagfeldt A, Lira-Cantu M (2019) PbZrTiO3 ferroelectric oxide as an electron extraction material for stable halide perovskite solar cells. Sustain Energy Fuels 3:382–389

    Article  Google Scholar 

  54. Liu X, Chueh C-C, Zhu Z, Byeok S, Sun Y, Jen AK-Y (2016) Highly crystalline Zn2SnO4 nanoparticles as efficient electron-transporting layers toward stable inverted and flexible conventional perovskite solar cells. J Mater Chem A 4:15294–15301

    Article  CAS  Google Scholar 

  55. Mali SS, Shim CS, Kim H, Hong CK (2016) Reduced graphene oxide (rGO) grafted zinc stannate (Zn2SnO4) nanofiber scaffolds for highly efficient mixed-halide perovskite solar cells. J Mater Chem A 4:12158–12169

    Article  CAS  Google Scholar 

  56. Li Y, Zhao L, Xiao M, Huang Y, Dong B, Xu Z, Wan L, Li W, Wang S (2018) Synergic effects of up conversion nanoparticles NaYbF4:Ho3+ and ZrO2 enhanced the efficiency in hole-conductor-free perovskite solar cells. Nanoscale 10:22003–22011

    Article  CAS  Google Scholar 

  57. Zhang Y, Wang J, Liu X, Li W, Huang F, Peng Y, Zhong J, Cheng Y, Ku Z (2017) Enhancing the performance and stability of carbon-based perovskite solar cells by the cold isostatic pressing method. RSC Adv 7:48958–48961

    Article  CAS  Google Scholar 

  58. Mahmood K, Sarwar S, Mehran MT (2017) Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv 7:17044–17062

    Article  CAS  Google Scholar 

  59. Im JH, Jang IH, Pellet N, Grätzel M, Park N-G (2014) Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol 9:927–932

    Article  CAS  Google Scholar 

  60. Tai Q, You P, Sang H, Liu Z, Hu C, Chan HLW, Yan F (2016) Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat Commun 7:11105

    Article  CAS  Google Scholar 

  61. Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad AA, Sadhanala A, Eperon GE, Pathak SK, Johnston MB, Petrozza A, Herza LM, Snaith HJ (2014) Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci 7:3061–3068

    Article  CAS  Google Scholar 

  62. Eckhardt K, Bon V, Getzschmann J, Grothe J, Wasser FM, Kaskel S (2016) Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic–inorganic material as a potential absorber for photovoltaics. Chem Commun 52:3058–3060

    Article  CAS  Google Scholar 

  63. Singh T, Kulkarni A, Ikegami M, Miyasaka T (2016) Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3 Bi2I9 for photovoltaic applications. ACS Appl Mater Interfaces 8:14542–14547

    Article  CAS  Google Scholar 

  64. Shin J, Kim M, Jung S, Kim CS, Park J, Song S, Chung K-B, Jin S-H, Lee JH, Song M (2018) Enhanced efficiency in lead-free bismuth iodide with post treatment based on a hole-conductor-free perovskite solar cell. Nano Res 11:6283–6293

    Article  CAS  Google Scholar 

  65. Zhang Z, Li X, Xia X, Wang Z, Huang Z, Lei B, Gao Y (2017) High-quality (CH3NH3)3Bi2I9 film-based solar cells: pushing efficiency up to 1.64%. J Phys Chem Lett 8:4300–4307

    Article  CAS  Google Scholar 

  66. Dhruba B, Shirai Y, Yanagida M, Miyano K (2019) Tailoring the film morphology and interface band offset of cesium bismuth iodide-based Pb-free perovskite solar cells. J Mater Chem C 7:8335–8343

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaikh M. Mobin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahmad, K., Mobin, S.M. (2020). Perovskite Materials in Photovoltaics. In: Kharissova, O., Martínez, L., Kharisov, B. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics