Skip to main content

Dye-Sensitized Solar Cells

Improving the Energy Production Through the Application of Nanotechnology

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

To cope with the depletion of fossil fuels and the contamination that its use produces, we must take advantage of natural and renewable resources, especially abundant solar radiation. Nowadays, three generations of solar cells have being developed, each having its own advantages and disadvantages. For instance, it is well-known that the currently commercialized solar cells have some major drawbacks; their assembly requires special conditions, and the materials needed are nonabundant and expensive.

Among the third generation of solar cells, we find dye-sensitized solar cells (DSSC), which have gained popularity due to their simple assembly as well to their low cost. These photovoltaic devices, inspired by the natural phenomenon of photosynthesis, have been further improved thanks to the development of nanotechnology. This science plays a major role in DSSC, and the advances in synthesis and characterization have allowed to further improve the electrode and the counter electrode materials. The developing of DSSC characterization techniques has made known about the internal processes, which have helped to develop new sensitizers and electrolytes. In this chapter, we talk about the working principle of DSSC, the components and materials of the device, and characterization techniques and outlook for this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Abd-Ellah M, Moghimi N, Zhang L, Thomas JP, McGillivray D, Srivastava S, Leung KT (2016) Plasmonic gold nanoparticles for ZnO-nanotube Photoanodes in dye-sensitized solar cell application. Nanoscale 8(3):1658–1664. https://doi.org/10.1039/C5NR08029K

    Article  CAS  Google Scholar 

  2. Ahmed U, Alizadeh M, Rahim NA, Shahabuddin S, Shakeel Ahmed M, Pandey AK (2018) A comprehensive review on counter electrodes for dye sensitized solar cells: a special focus on Pt-TCO free counter electrodes. Solar Energ 174:1097–1125. https://doi.org/10.1016/j.solener.2018.10.010

    Article  CAS  Google Scholar 

  3. Birel Ö, Nadeem S, Duman H (2017) Porphyrin-based dye-sensitized solar cells (DSSCs): a review. J Fluoresc 27:1075–1085. https://doi.org/10.1007/s10895-017-2041-2

    Article  CAS  Google Scholar 

  4. Bora C, Sarkar C, Mohan KJ, Dolui S (2015) Polythiophene/graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells. Electrochim Acta 157:225–231. https://doi.org/10.1016/j.electacta.2014.12.164

    Article  CAS  Google Scholar 

  5. Borbón S, Lugo S, Pourjafari D, Pineda-Aguilar N, Oskam G, López I (2020) Open-circuit voltage (VOC) enhancement in TiO2-based DSSCs: incorporation of ZnO nanoflowers and au nanoparticles. ACS Omega 5(19):10977–10986. https://doi.org/10.1021/acsomega.0c00794

    Article  CAS  Google Scholar 

  6. Boro B, Gogoi B, Rajbongshi BM, Ramchiary A (2018) Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew Sust Energ Rev 81(2):2264–2270. https://doi.org/10.1016/j.rser.2017.06.035

    Article  CAS  Google Scholar 

  7. Calogero G, Bartolotta A, Di Marco G, Di Carlo A, Bonaccorso F (2015) Vegetable-based dye-sensitized solar cells. Chem Soc Rev 44:3244–3294. https://doi.org/10.1039/C4CS00309H

    Article  CAS  Google Scholar 

  8. Carella A, Borbone F, Centore R (2018) Research progress on photosensitizers for DSSC. Front Chem 6:481. https://doi.org/10.3389/fchem.2018.00481

    Article  CAS  Google Scholar 

  9. Chang LY, Li CT, Li YY, Lee CP, Yeh MH, Ho KC, Lin JJ (2015) Morphological influence of polypyrrole nanoparticles on the performance of dye-sensitized solar cells. Electrochim Acta 155:263–271. https://doi.org/10.1016/j.electacta.2014.12.127

    Article  CAS  Google Scholar 

  10. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon P-N junction photocell for converting solar radiation into electrical power. J App Phys 25:676. https://doi.org/10.1063/1.1721711

    Article  CAS  Google Scholar 

  11. Chava RK, Kang M (2017) Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J Alloys Compd 692:67–76. https://doi.org/10.1016/j.jallcom.2016.09.029

    Article  CAS  Google Scholar 

  12. Chen TY, Huang YJ, Li CT, Kung CW, Vittal R, Ho KC (2017) Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells. Nano Energy 32:19–27. https://doi.org/10.1016/j.nanoen.2016.12.019

    Article  CAS  Google Scholar 

  13. Chen YZ, Wu RJ, Lin LY, Chang WC (2019) Novel synthesis of popcorn-like TiO2 light scatterers using a facile solution method for efficient dye-sensitized solar cells. J Power Sources 413:384–390. https://doi.org/10.1016/j.jpowsour.2018.12.065

    Article  CAS  Google Scholar 

  14. Geim AK, Novoselov KS (2009) The rise of graphene. In: Nanoscience and technology, pp 11–19. https://doi.org/10.1142/9789814287005_0002

    Chapter  Google Scholar 

  15. Guo J, Shi Y, Chu Y, Ma T (2013a) Highly efficient telluride electrocatalysts for use as Pt-free counter electrodes in dye-sensitized solar cells. Chem Commun 49:10157–10159. https://doi.org/10.1039/C3CC45698F

    Article  CAS  Google Scholar 

  16. Guo JW, Zhang B, Hou Y, Yang S, Yang XH, Yang HG (2013b) A sulfur-assisted strategy to decorate MWCNTs with highly dispersed Pt nanoparticles for counter electrode in dye-sensitized solar cells. J Mater Chem A 1:1982–1986. https://doi.org/10.1039/C2TA01003H

    Article  CAS  Google Scholar 

  17. Guo J, Liang S, Shi Y, Hao C, Wang X, Ma T (2015) Transition metal selenides as efficient counter-electrode materials for dye-sensitized solar cells. Phys Chem Chem Phys 17:28985–28992. https://doi.org/10.1039/C5CP04862A

    Article  CAS  Google Scholar 

  18. Hong CK, Ko HY, Han EM, Park KH (2015) Electrochemical properties of electrodeposited PEDOT counter electrode for dye-sensitized solar cells. Int J Electrochem Sci 10:5521–5529

    CAS  Google Scholar 

  19. Hsieh TL, Chen HW, Kung CW, Wang CC, Vittal R, Ho KC (2012) A highly efficient dye-sensitized solar cell with a platinum nanoflowers counter electrode. J Mater Chem 22:5550–5559. https://doi.org/10.1039/C2JM14623A

    Article  CAS  Google Scholar 

  20. Hug H, Bader M, Mair P, Glatzel T (2014) Biophotovoltaics: natural pigments in dye-sensitized solar cells. Appl Energy 115:216–225. https://doi.org/10.1016/j.apenergy.2013.10.055

    Article  CAS  Google Scholar 

  21. Hwang HJ, Joo SJ, Patil SA, Kim HS (2017) Efficiency enhancement in dye-sensitized solar cells using the shape/size-dependent plasmonic nanocomposite photoanodes incorporating silver nanoplates. Nanoscale 9:7960–7969. https://doi.org/10.1039/C7NR01059A

    Article  CAS  Google Scholar 

  22. Karam C, Habchi R, Tingry S, Miele P, Bechelany M (2018) Design of multilayers of urchin-like ZnO nanowires coated with TiO2 nanostructures for dye-sensitized solar cells. ACS Appl Nano Mater 1(7):3705–3714. https://doi.org/10.1021/acsanm.8b00849

    Article  CAS  Google Scholar 

  23. Karim NA, Mehmood U, Zahid HF, Asif T (2019) Nanostructured photoanode and counter electrode materials for efficient dye-sensitized solar cells (DSSCs). Sol Energy 185:165–188. https://doi.org/10.1016/j.solener.2019.04.057

    Article  CAS  Google Scholar 

  24. Khan MI, Saleem M, Rehman SUR, Ali SS, Qadri MU, Ahmed N, Javed MS, Iqbal J (2018) Stacked layer effect of ZnO/TiO2 on the efficiency of dye sensitized solar cells. J Nanoelectron Optoelectron 14(2):291–296. https://doi.org/10.1166/jno.2019.2493

    Article  CAS  Google Scholar 

  25. Kumara NTRN, Lim A, Lim CM, Petra MI, Ekanayake P (2017) Recent progress and utilization of natural pigments in dye sensitized solar cells: a review. Renew Sust Energ Rev 78:301–317. https://doi.org/10.1016/j.rser.2017.04.075

    Article  CAS  Google Scholar 

  26. Lanjewar M, Gohel JV (2017) Enhanced performance of ag-doped ZnO and pure ZnO thin films DSSCs prepared by sol-gel spin coating. Inorg Nano-Met Chem 47(7):1090–1096. https://doi.org/10.1080/24701556.2016.1241275

    Article  CAS  Google Scholar 

  27. Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181(4099):547–549. https://doi.org/10.1126/science.181.4099.547

    Article  CAS  Google Scholar 

  28. Li GR, Gao XP (2019) Low-cost counter-electrode materials for dye-sensitized and perovskite solar cells. Adv Mat 1806478. https://doi.org/10.1002/adma.201806478

  29. Li YY, Li CT, Yeh MH, Huang KC, Chen PW, Vittal R, Ho KC (2015) Graphite with different structures as catalysts for counter electrodes in dye-sensitized solar cells. Electrochim Acta 179:211–219. https://doi.org/10.1016/j.electacta.2015.06.007

    Article  CAS  Google Scholar 

  30. Liu J, Wei A, Zhao Y, Lin K, Luo F (2014) Dye-sensitized solar cells based on ZnO nanoflowers and TiO2 nanoparticles composite photoanodes. J Mater Sci Mater Electron 25:1122–1126. https://doi.org/10.1007/s10854-013-1698-9

    Article  CAS  Google Scholar 

  31. Liu Q, Wei Y, Shahid MZ, Yao M, Xu B, Liu G, Jiang K, Li C (2018) Spectrum-enhanced au@ZnO plasmonic nanoparticles for boosting dye-sensitized solar cell performance. J Power Sources 380:142–148. https://doi.org/10.1016/j.jpowsour.2018.01.089

    Article  CAS  Google Scholar 

  32. Ma J, Yang H, Ren W, Yang Y (2019) Functionalization of aligned carbon nanotubes used as counter electrode for dye-sensitized solar cells. Mater Res Express 6(7):075611. https://doi.org/10.1088/2053-1591/aaf152

    Article  CAS  Google Scholar 

  33. Mahmoud MS, Akhtar MS, Mohamed IMA, Hamdan R, Dakka YA, Barakat NAM (2018) Demonstrated photons to electron activity of S-doped TiO2 nanofibers as photoanode in the DSSC. Mat Lett 225:77–81. https://doi.org/10.1016/j.matlet.2018.04.108

    Article  CAS  Google Scholar 

  34. Mandal P, Sharma S (2016) Progress in plasmonic solar cell efficiency improvement: a status review. Renew Sust Energ Rev 65:537–552. https://doi.org/10.1016/j.rser.2016.07.031

    Article  CAS  Google Scholar 

  35. Meyer E, Taziwa R, Mutukwa D, Zingwe N (2018) A review on the advancement of ternary alloy counter electrodes for use in dye-sensitised solar cells. Metals 8:1080. https://doi.org/10.3390/met8121080

    Article  Google Scholar 

  36. Miettunen K, Halme J, Vahermaa P, Saukkonen T, Toivola M, Lund P (2009) Dye solar cells on ITO-PET substrate with TiO2 recombination blocking layers. J Electrochem Soc 156(8):B876–B883. https://doi.org/10.1149/1.3138129

    Article  CAS  Google Scholar 

  37. Motlak Mo HAM, Hammed MG, Barakat NAM (2019) Cd-doped TiO2 nanofibers as effective working electrode for the dye sensitized solar cells. Mater Lett 246:206–209. https://doi.org/10.1016/j.matlet.2019.03.067

    Article  CAS  Google Scholar 

  38. Mustafa MN, Shafie S, Wahid MH, Sulaiman Y (2019) Light scattering effect of polyvinyl-alcohol/titanium dioxide nanofibers in the dye-sensitized solar cell. Sci Rep 9:14952. https://doi.org/10.1038/s41598-019-50292-z

    Article  CAS  Google Scholar 

  39. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  40. Pang Z, Zhao Y, Duan Y, Duan J, Tang Q, Yu L (2019) Well-aligned NiPt alloy counter electrodes for high-efficiency dye-sensitized solar cell applications. J Energy Chem 30:49–56. https://doi.org/10.1016/j.jechem.2018.03.016

    Article  Google Scholar 

  41. Prabavathy N, Shalini S, Balasundaraprabhu R, Velauthapillai D, Prasanna S, Muthukumarasamy N (2017) Enhancement in the photostability of natural dyes for dye-sensitized solar cell (DSSC) applications: a review. Int J Energy Res 41(10):1372–1396. https://doi.org/10.1002/er.3703

    Article  CAS  Google Scholar 

  42. Sakthivel T, Kumar KA, Ramanathan R, Senthilselvan J, Jagannathan K (2017) Silver doped TiO2 nano crystallites for dye-sensitized solar cell (DSSC) applications. Mat Res Express 4(12):126310. https://doi.org/10.1088/2053-1591/aa9e36

    Article  CAS  Google Scholar 

  43. Saranya K, Rameez M, Subramania A (2015) Developments in conducting polymer based counter electrodes for dye-sensitized solar cells - an overview. Eur Polym J 66:207–227. https://doi.org/10.1016/j.eurpolymj.2015.01.049

    Article  CAS  Google Scholar 

  44. Saranya A, Devasena T, Sivaram H, Jayavel R (2018) Role of hexamine in ZnO morphologies at different growth temperature with potential application in dye sensitized solar cell. Mat Sci Semicond Process 92:108–115. https://doi.org/10.1016/j.mssp.2018.03.028

    Article  CAS  Google Scholar 

  45. Saurdi I, Shafura AK, Azhar NEA, Ishak A, Malek MF, Salman Alrokayan AH, Khan HA, Mamat MH, Rusop M (2016) Effect of Nb-doped TiO2 on Nanocomposited aligned ZnO nanorod/TiO2:Nb for dye-sensitized solar cells. AIP Conf Proc 1733(1):020064. https://doi.org/10.1063/1.4948882

    Article  CAS  Google Scholar 

  46. Sengupta D, Das P, Mondal B, Mukherjee K (2016) Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application - a review. Renew Sust Energ Rev 60:356–376. https://doi.org/10.1016/j.rser.2016.01.104

    Article  CAS  Google Scholar 

  47. Shakeel Ahmad M, Pandey AK, Rahim NA (2017) Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renew Sust Energ Rev 77:89–108. https://doi.org/10.1016/j.rser.2017.03.129

    Article  CAS  Google Scholar 

  48. Sharma S, Siwach B, Ghoshal SK, Mohan D (2017) Dye sensitized solar cells: from genesis to recent drifts. Renew Sust Energ Rev 70:529–537. https://doi.org/10.1016/j.rser.2016.11.136

    Article  CAS  Google Scholar 

  49. Song C, Wang S, Dong W, Fang X, Shao J, Zhu J, Pan X (2016) Hydrothermal synthesis of Iron pyrite (FeS2) as efficient counter electrodes for dye-sensitized solar cells. Sol Energy 133:429–436. https://doi.org/10.1016/j.solener.2016.04.002

    Article  CAS  Google Scholar 

  50. Song DH, Kim HS, Suh JS, Jun BH, Rho WY (2017) Multi-shaped ag nanoparticles in the plasmonic layer of dye-sensitized solar cells for increased power conversion efficiency. Nano 7(6):136. https://doi.org/10.3390/nano7060136

    Article  CAS  Google Scholar 

  51. Suzuki K, Makoto Y, Mikio K, Shozo Y (2003) Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem Lett 32(1):28–29. https://doi.org/10.1246/cl.2003.28

    Article  CAS  Google Scholar 

  52. Tang Q, Zhang H, Meng Y, He B, Yu L (2015a) Dissolution engineering of platinum alloy counter electrodes in dye-sensitized solar cells. Angew Chem Int Ed 54:11448–11452. https://doi.org/10.1002/anie.201505339

    Article  CAS  Google Scholar 

  53. Tang Q, Duan J, Duan Y, He B, Yu L (2015b) Recent advances in alloy counter electrodes for dye-sensitized solar cells. A critical review. Electrochim Acta 178:886–899. https://doi.org/10.1016/j.electacta.2015.08.072

    Article  CAS  Google Scholar 

  54. Ünlü B, Özacar M (2020) Effect of cu and Mn amounts doped to TiO2 on the performance of DSSCs. Sol Energy 196:448–456. https://doi.org/10.1016/j.solener.2019.12.043

    Article  CAS  Google Scholar 

  55. Vidu R, Rahman M, Mahmoudi M, Enachescu M, Poteca TD, Opris I (2014) Nanostructures: a platform for brain repair and aumentation. Front Syst Neurosci 8:91. https://doi.org/10.3389/fnsys.2014.00091

    Article  Google Scholar 

  56. Villanueva-Cab J, Olalde-Velasco P, Romero-Contreras A, Zhuo Z, Rodil SE, Yang W, Pal U (2018) Photocharging and band gap narrowing effects on the performance of plasmonic photoelectrodes in dye-sensitized solar cells. ACS Appl Mater Interfaces 10(37):31374–21383. https://doi.org/10.1021/acsami.8b10063

    Article  CAS  Google Scholar 

  57. Wang G, Zhuo S, Xing W (2012) Graphene/polyaniline nanocomposite as counter electrode of dye-sensitized solar cells. Mater Lett 69:27–29. https://doi.org/10.1016/j.matlet.2011.11.086

    Article  CAS  Google Scholar 

  58. Wang W, Liu Y, Sun J, Gao L (2016) Nitrogen and yttrium co-doped mesoporous titania photoanodes applied in DSSCs. J Alloys Compd 659:15–22. https://doi.org/10.1016/j.jallcom.2015.10.254

    Article  CAS  Google Scholar 

  59. Wang W, Yuan H, Xie J, Xu D, Chen X, He Y, Zhang T, Chen Z, Zhang Y, Shen H (2018) Enhanced efficiency of large-area dye-sensitized solar cells by light-scattering effect using multilayer TiO2 Photoanodes. Mat Res Bull 100:434–439. https://doi.org/10.1016/j.materresbull.2017.12.032

    Article  CAS  Google Scholar 

  60. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110(32):15666–15675. https://doi.org/10.1021/jp0608628

    Article  CAS  Google Scholar 

  61. Wu M, Lin X, Wang Y, Wang L, Guo W, Qi P, Peng X, Hagfeldt A, Gratzel M, Ma T (2012) Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. J Am Chem Soc 134(7):3419–3428. https://doi.org/10.1021/ja209657v

    Article  CAS  Google Scholar 

  62. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115(5):2136–2173. https://doi.org/10.1021/cr400675m

    Article  CAS  Google Scholar 

  63. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G, Lin Y, Xie Y, Wei Y (2017) Counter electrodes in dye-sensitized solar cells. Chem Soc Rev 46:5975–6023. https://doi.org/10.1039/C6CS00752J

    Article  CAS  Google Scholar 

  64. Xiao Y, Han G (2016) High performance platinum nanofibers with interconnecting structure using in dye-sensitized solar cells. Org Electron 37:239–244. https://doi.org/10.1016/j.orgel.2016.06.041

    Article  CAS  Google Scholar 

  65. Xu L, Xu J, Hu H, Cui C, Ding Z, Yan Y, Lin P, Wang P (2019) Hierarchical submicro flowers assembled from ultrathin anatase TiO2 nanosheets as light scattering centers in TiO2 photoanodes for dye-sensitized solar cells. J Alloys Compd 776:1002–1008. https://doi.org/10.1016/j.jallcom.2018.10.386

    Article  CAS  Google Scholar 

  66. Yang Q, Yang P, Duan J, Wang X, Wang L, Wang Z, Tang Q (2016a) Ternary platinum alloy counter electrodes for high-efficiency dye-sensitized solar cells. Electrochim Acta 190:85–91. https://doi.org/10.1016/j.electacta.2016.01.044

    Article  CAS  Google Scholar 

  67. Yang Y, Zhao J, Cui C, Zhang Y, Hu H, Xu L, Pan J, Li C, Tang W (2016b) Hydrothermal growth of ZnO nanowires scaffolds within mesoporous TiO2 photoanodes for dye-sensitized solar cells with enhanced efficiency. Electrochim Acta 196:348–356. https://doi.org/10.1016/j.electacta.2016.03.022

    Article  CAS  Google Scholar 

  68. Ye XY, Gu YH, Chen H, Cao YF, Liu YY, Lei BX, Sun W, Sun ZF (2019) Non-aqueous preparation of anatase TiO2 hollow microspheres for efficient dye-sensitized solar cells. Adv Powder Technol 30(10):2408–2415. https://doi.org/10.1016/j.apt.2019.07.023

    Article  CAS  Google Scholar 

  69. Zhang Y, Zhou N, Zhang K, Yan F (2017) Plasmonic copper nanowire@TiO2 nanostructures for improving the performance of dye-sensitized solar cells. J Power Sources 342:292–300. https://doi.org/10.1016/j.jpowsour.2016.12.068

    Article  CAS  Google Scholar 

  70. Zhang W, Chang S, Yao S, Wang H (2019) Preparation and characterization of submicron star-like ZnO as light scattering centers for combination with ZnO nanoparticles for dye-sensitized solar cells. Journal of Elec Materi 48:4895–4901. https://doi.org/10.1007/s11664-019-07278-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Borbón, S., Lugo, S., López, I. (2020). Dye-Sensitized Solar Cells. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics