Skip to main content

Adsorption Based Removal of Heavy Metals from Water Using Nano-Akaganéites

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Worldwide, hazardous heavy metals are the major water pollutants. Adsorption-based removal of the hazardous heavy metals from water is the most evaluated methods. In this context, nano-Akaganéites are tauted as excellent adsorbents for removal of hazardous heavy metals from water. This chapter will report synthesis and characteristics of nano-Akaganéites for adsorption-based removal of hazardous heavy metals from water. Several synthesis pathways will be reviewed. Morphological, structural, and phase characteristics of nano-Akaganéites will be discussed in correlation with their ability to remove heavy metals (such as As(III), Se(VI), etc.,) through adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. http://globalpollutionmap.org/sites.html

  2. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater B97:219–243

    Google Scholar 

  3. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Google Scholar 

  4. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Google Scholar 

  5. Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48(2):463–487

    Google Scholar 

  6. Zhao J, Lin W, Chang Q, Li W, Lai Y (2012) Adsorptive characteristics of akaganeite and its environmental applications: a review. Environ Techn Rev 1(1):114–126

    Google Scholar 

  7. Zhang Y-X, Jia Y (2014) A facile solution approach for the synthesis of akaganéite (β-FeOOH) nanorods and their ion-exchange mechanism toward As(V) ions. Appl Surf Sci 290:102–106

    Google Scholar 

  8. Deliyanni EA, Bakoyannakis DN, Zouboulis AI, Matis KA (2003) Sorption of As(V) ions by akaganéite-type nanocrystals. Chemosphere 50:155–163

    Google Scholar 

  9. Deliyanni EA, Nalbandian L, Matis KA, Colloid J (2006) Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant–akaganeite sorbent. Inter Sci 302:458–466

    Google Scholar 

  10. Cho AK, Yi Shin B, Park HK, Cha BG, Kim J (2014) Size-controlled synthesis of uniform akaganeite nanorods and their encapsulation in alginate microbeads for arsenic removal. RSC Adv 4:21777–21781

    Google Scholar 

  11. Kolbe F, Weiss H, Morgenstern P, Wennrich R, Lorenz W, Schurk K, Stanjek H, Daus B (2011) Sorption of aqueous antimony and arsenic species onto akaganeite. J Colloid Interf Sci 357:460–465

    Google Scholar 

  12. Lazaridis NK, Bakoyannakis DN, Deliyanni EA (2005) A study on the interaction between ferric ion and silicic acid in hydrosphere: Si-containing ferruginous deposits formed in neutral hot spring waters. Chemosphere 58:65–73

    Google Scholar 

  13. Deliyanni EA, Matis KA (2005) Sorption of Cd ions onto akaganéite-type nanocrystals. Separ Purif Technol 45:96–102

    Google Scholar 

  14. O’reilly SE, Hochella Jr MF (2003) Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochimica et Cosmochimica Acta 67(23):4471–4487

    Google Scholar 

  15. Yusan S, Erenturk SA (2010) Adsorption equilibrium and kinetics of U (VI) on beta type of akaganeite. Desalination 263:233–239

    Google Scholar 

  16. Deliyanni EA, Peleka EN, Lazaridis NK (2007) Comparative study of phosphates removal from aqueous solutions by nanocrystalline akaganéite and hybrid surfactant-akaganéite. Separ Purif Technol 52:478–486

    Google Scholar 

  17. Deliyanni EA, Peleka EN, Matis KA (2007) Sorption of metal ions from aqueous solution on fixed-beds of iron-based adsorbents. J Hazard Mater 141:176–184

    Google Scholar 

  18. Deliyanni EA, Nalbandian L, Matis KA (2006) Arsenates sorption by nanocrystalline hybrid surfactant-akaganéite. J Collo Interf Sci 302:458–466

    Google Scholar 

  19. Chen M-L, Sun Y, Huo CB, Liu C, Wang JH (2015) Akaganeite decorated graphene oxide composite for arsenic adsorption/removal and its proconcentration at ultra-trace level. Chemosphere 130:52–58

    Google Scholar 

  20. Kabata-Pendias A, Pendias H (2000) Trace elements in soils and plants. CRC Press, Boca Raton

    Book  Google Scholar 

  21. Bodek I, Lyman WJ, Reehl WF, Rosenblatt DH (1989) Environmental inorganic chemistry: properties, processes and estimation methods. Pergamon Press, New York

    Google Scholar 

  22. Greenwood NN, Earnshaw A (1984) Chemistry of elements. Pergamon Press, Oxford. (Chapter 13)

    Google Scholar 

  23. Mohan D, Pittman Jr CU (2007) Arsenic removal from water/wastewater using adsorbents—A critical review. J Hazard Mater 142:1–53

    Google Scholar 

  24. Tongesayi T, Tongesayi S (2015) Food, energy, and water. Elsevier, Amsterdam, pp 349–381

    Book  Google Scholar 

  25. Kongsri S, Janpradit K, Buapa K, Techawongstien S, Chanthai S (2013) Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution. Chem Eng J 215–216:522–532

    Google Scholar 

  26. Zhang N, Lin LS, Gang DC (2008) Water Res 42(14):3809–3816

    Google Scholar 

  27. Bleiman N, Mishael YG (2010) Selenium removal from drinking water by adsorption to chitosan–clay composites and oxides: Batch and columns tests. J Haz Mat 183:590–595

    Google Scholar 

  28. Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Taylor and Francis Group, Boca Raton, pp 367–381

    Google Scholar 

  29. Zelmanov G, Semiat R (2013) Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Separat Purif Technol 103:167–172

    Google Scholar 

  30. Saha D, Singh BP, Srivastava SK, Dwivedi SN, Mukherjee R (2014) Concept note on geogenic contamination of ground water in India. Central Ground Water Board, Ministry of Water Resources Govt. of India, Faridabad, Haryana, India

    Google Scholar 

  31. Adamson AW, Gast AP (1997) Physical chemistry of surfaces. John Wiley & Sons, New York

    Google Scholar 

  32. Lui LL, Luo X-B, Luo S-L (2019) Application of nanotechnology in the removal of heavy metal from water (Chapter 4). In: Luo X and Deng F (Eds.) Nanomaterials for the removal of pollutants and resource reutilization, Elsevier, Cambridge, MA, United States, pp 87–147

    Google Scholar 

  33. Deng F, Luo X-B, Ding L, Luo S-L (2019) Application of nanomaterials and nanotechnology in the reutilization of metal ion from wastewater (Chapter 5). In: Luo X and Deng F (Eds.) Nanomaterials for the removal of pollutants and resource reutilization, Elsevier, Cambridge, MA, United States, pp 149–178

    Google Scholar 

  34. Mackay AL (1962) β-Ferric oxyhydroxide—akaganéite. Mineral Magaz 33:270–280

    Google Scholar 

  35. Misawa T, Hashimoto K, Shimodaira S (1974) The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature. Corrosion Sci 14:131–149

    Google Scholar 

  36. Post JE, Buchwald VF (1991) Crystal structure refinement of akaganéite. Am Mineral 76:272–277

    Google Scholar 

  37. Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides – a review. Int J Eng Sci Tech 2(8):127–146

    Google Scholar 

  38. Cornell RM, Schwertmann U (2003) The iron oxides, 2nd edn. Wiley, New York

    Book  Google Scholar 

  39. Turgoose S (1982) Post-excavation changes in iron antiquities. Stud Conserv 27:97–101

    Google Scholar 

  40. Askey A, Lyon SB, Thompson GE, Johnson JB, Wood GC, Cooke M, Sage P (1993) The corrosion of iron and zinc by atmospheric hydrogen chloride. Corrosion Sci 34(2):233–247

    Google Scholar 

  41. Refait P, Genin JMR(1997) The mechanisms of oxidation of ferrous hydroxychloride β-Fe2 (OH)3 Cl in aqueous solution: The formation of akaganeite vs goethite. Corrosion Sci 39:539–553

    Google Scholar 

  42. Selwyn LS, Sirois PJ, Argyropoulos V (1999) The corrosion of excavated archaeological iron with details on weeping and akaganéite. Stud Conserv 44:217–232

    Google Scholar 

  43. Stahl K, Nielsen K, Jiang J, Lebech B, Hanson JC, Norby P, Lanshot JV (2003) On the akaganeite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts. Corrosion Sci 45:2563–2575

    Google Scholar 

  44. Schwetmann U, Cornell RM (2000) Iron oxides in the laboratory, 2nd edn. VCH publishers, New York

    Book  Google Scholar 

  45. Sugimoto T, Sakata K, Muramatsu A (1993) Synthesis and applications of nano-structured iron oxides/hydroxides - A review. J Collo Interf Sci 159(2):372–382

    Google Scholar 

  46. Domingo C, Clemente RR, Blesa M (1994) Surface complexation at the TiO2 (anatase)/aqueous solution interface: Chemisorption of catechol. J Collo Interf Sci 165:244–252

    Google Scholar 

  47. Dong Y, Yang H, Rao R, Zhang A (2009) Selective synthesis of α-FeOOH and α-Fe2 O3 nanorods via a temperature controlled process. J Nanosci Technol 9(8):4774–4779

    Google Scholar 

  48. Lian S, Wang E, Kang Z, Bai Y, Gao L, Jiang M, Hu C, Xu L (2004) Synthesis of magnetite nanorods and porous hematite nanorods. Sol State Commun 129:485–490

    Google Scholar 

  49. Xu Y, Yang S, Zhang G, Sun Y, Gao D, Sun Y (2011) Uniform hematite α-Fe2O3 nanoparticles: Morphology, size-controlled hydrothermal synthesis and formation mechanism. Mat Lett 65:1911–1914

    Google Scholar 

  50. Wei C, Nan Z (2011) Effects of experimental conditions on one-dimensional single-crystal nanostructure of β-FeOOH. Mater Chem Phys 127:220–226

    Google Scholar 

  51. Villalba JC, Berezoski S, de Cavicchiolli KA, Galvani V, Anaissi FJ (2013) Structural refinement and morphology of synthetic akaganèite crystals, [β-FeO(OH)]. Mater Lett 104:17–20

    Google Scholar 

  52. Kersten M, Karabacheva S, Vlasova N, Branscheid R, Schurk K, Stanjek H (2014) Surface complexation modeling of arsenate adsorption by akagenéite (β-FeOOH)-dominant granular ferric hydroxide. Coll Surf A Physicochem Eng Aspects 448:73–80

    Google Scholar 

  53. Xu Z, Liang J, Zhou L (2013) Template-free hydrothermal synthesis of β-FeOOH nanorods and their catalytic activity in the degradation of methyl orange by a photo-fenton-like process. Open J Inorg Non-Metallic Mat 3:58–65

    Google Scholar 

  54. Parameshwari R, Priyadarshini P, Chandrasekaran G (2011) Optimization, structural, spectroscopic and magnetic studies on stable akaganeite nanoparticles via co-precipitation method. Am J Mater Sci 1(1):18–25

    Google Scholar 

  55. Mohammed MAA (2015) PhD Thesis, University of Hyderabad

    Google Scholar 

  56. Glavee GN, Klabunde KJ, Sorensen CM, Hadjapanayis GC (1992) Borohydride reductions of metal ions. A new understanding of the chemistry leading to nanoscale particles of metals, borides, and metal borates. Langmuir 8:771–773

    Google Scholar 

  57. Mohapatra M, Mohapatra L, Anand S, Mishra BK (2010) One-pot synthesis of high surface area nano-akaganeite powder and its cation sorption behavior. J Chem Eng Data 55:1486–1491

    Google Scholar 

  58. Jassal V, Shanker U, Gahlota S (2016) Green synthesis of some iron oxide nanoparticles and their interaction with 2-Amino, 3-Amino and 4-aminopyridines. Mater Today: Proc 3:1874–1882

    Google Scholar 

  59. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Google Scholar 

  60. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380

    Google Scholar 

  61. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87(9–10):1051–1069

    Google Scholar 

  62. Deliyanni EA, Bakoyannakis DN, Zouboulis AI, Peleka E (2003) Removal of arsenic and cadmium by akaganeite fixed-beds. Separ Sci Technol 38:3967–3981

    Google Scholar 

  63. Shokry A, El Tahan A, Ibrahim H, Soliman M, Ebrahim S (2019) Polyaniline/akaganéite superparamagnetic nanocomposite for cadmium uptake from polluted water. Desalin Water Treat 171:205–215

    Google Scholar 

  64. Wang T, Zhang P, Ni S, Huang Y, Qiu K, Li J, Zhang M, Yin H, Li J (2019) Synthesis of nano-akaganeite powder and its chromium adsorption behavior. Ferroelectrics 540(1):184–192

    Google Scholar 

  65. (Doyurum) Yusan S, Akyil S (2008) Sorption of uranium(VI) from aqueous solutions by akaganeite. J Haz Mat 160(2–3):388–395

    Google Scholar 

  66. Yusan S, Erenturk SA (2010) Adsorption equilibrium and kinetics of U(VI) on beta type of akaganeite. Desalination 263(1–3):233–239

    Google Scholar 

  67. Tufo AE, Larralde AL, Villarroel-Rocha J, Sapag K, Sileo EE (2018) Synthesis and characterization of pure and Al-substituted akaganeites and evaluation of their performance to adsorb As(V). J Environ Chem Eng 6(6):7044–7053

    Google Scholar 

  68. Lu J, Xu K, Yang J, Hao Y, Cheng F (2017) Nano iron oxide impregnated in chitosan bead as a highly efficient sorbent for Cr(VI) removal from water. Carbohydrate Polymers 173:28–36

    Google Scholar 

  69. Sinha A, Cha BG, Kim J (2018) Three-dimensional macroporous alginate scaffolds embedded with akaganeite nanorods for the filter-based high-speed preparation of arsenic-free drinking water. ACS Appl Nano Mater 1(4):1940–1948

    Google Scholar 

  70. Seo H, Sun E, Roh Y (2013) Remediation of chromium-contaminated water using biogenic nano-sized materials and metal-reducing bacteria. J Nanosci Nanotechnol 13(6):4405–4408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadali V. S. S. Srikanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Geo, S., Reddy, G.S.K., Yadav, S., Mohammed, M.A.A., Srikanth, V.V.S.S. (2021). Adsorption Based Removal of Heavy Metals from Water Using Nano-Akaganéites. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_135-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_135-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics