Skip to main content

Life Cycle of Polymer Nanocomposites Matrices in Hazardous Waste Treatment

  • Living reference work entry
  • First Online:

Abstract

The strengthened international and national regulatory requirements on hazardous contaminants discharge drives the research and development efforts to find and optimize novel materials that could be used effectively in removing these contaminants from different waste streams and isolating them from the accessible environment. The evolution of nanosciences and nanotechnologies led to considerable improvement in hazardous contaminants separation and degradation technologies, where nano-materials (NM) and nanocomposites were proposed for sorptive removal, catalytic degradation, and disinfections. On the other side, polymers and polymer composites have been extensively applied in the management of hazardous wastes in membrane separation, sorption, and immobilization of radioactive wastes. To improve the performance and stability of these materials, hybrid polymer nanocomposites (PNC) were evaluated. In this chapter, the life cycle of PNC applied in the management of hazardous wastes will be traced. The considered life cycle stages are design and preparation, applications, and management of contaminated PNC (end of life cycle). The main aim of this work is to summarize the current knowledge in the field by presenting PNC application in membrane separation, photocatalytic degradation, and sorptive removal of hazardous contaminants. The gaps in the application of these materials in radioactive waste immobilization will be highlighted. Finally the end of life cycle will be addressed by presenting thermal degradation and immobilization of PNC and identifying the challenges that associate them.

This is a preview of subscription content, log in via an institution.

References

  • Abdel Rahman RO (2010) Preliminary assessment of continuous atmospheric discharge from the low active waste incinerator. Int J Environ Sci 1(2):111–122

    Google Scholar 

  • Abdel Rahman RO (2012) Planning and implementation of radioactive waste management system. In: Abdel Rahman RO (ed) Radioactive waste. InTechOpen. https://doi.org/10.5772/39056. ISBN: 978-953-51-0551-0

    Chapter  Google Scholar 

  • Abdel Rahman RO (2016) Introduction to current trends in nuclear material research and technology. In: Abdel Rahman RO, Saleh HEM (eds) Nuclear material performance. Intech, pp 3–14. https://doi.org/10.5772/61411

    Google Scholar 

  • Abdel Rahman RO (2019) Introductory chapter: development of assessment models to support pollution preventive and control decisions. In: Abdel Rahman RO (ed) Kinetic modeling for environmental systems. IntechOpen. https://www.intechopen.com/online-first/introductory-chapter-development-of-assessment-models-to-support-pollution-preventive-and-control-de

  • Abdel Rahman RO, Michael IO (2017) Application of nano-materials in radioactive waste management. In: Tian CZ, Bhola RG, Govil JN (eds) Environmental science and engineering. Industrial processes & nanotechnology, vol 10. Studium Press, LLC, USA, Berlin, pp 361–378

    Google Scholar 

  • Abdel Rahman RO, Ojovan MI (2016) Recent trends in the evaluation of cementitious material in radioactive waste disposal. In: Wang L, Wang MH, Hung YT, Shammas N (eds) Natural resources and control processes. Handbook of environmental engineering, vol 17. Springer, Cham, pp 401–448. https://doi.org/10.1007/978-3-319-26800-2_9. http://link.springer.com/chapter/10.1007/978-3-319-26800-2_9/fulltext.html

    Chapter  Google Scholar 

  • Abdel Rahman RO, Saleh HM (2018) Introductory chapter: safety aspects in nuclear engineering. In: Abdel Rahman RO, Saleh HM (eds) Principles and applications in nuclear engineering: radiation effects, thermal hydraulics, radionuclide migration in the environment. Intech. https://doi.org/10.5772/intechopen.76818. ISBN 978-1-78923-616-3

    Chapter  Google Scholar 

  • Abdel Rahman RO, Zaki AA (2009) Assessment of the leaching characteristics of incineration ashes in cement matrix. Chem Eng J 155:698–708

    Article  CAS  Google Scholar 

  • Abdel Rahman RO, El Kamash AM, Ali HF et al (2011) Overview on recent trends and developments in radioactive liquid waste treatment part 1: sorption/ion exchange technique. Int J Environ Eng Sci 2(1):1–16

    Google Scholar 

  • Abdel Rahman RO, Kozak MW, Hung YT (2014a) Radioactive pollution and control. In: Hung YT, Wang LK, Shammas NK (eds) Handbook of environment and waste management. World Scientific Publishing, Singapore, pp 949–1027

    Chapter  Google Scholar 

  • Abdel Rahman RO, Elmesawy M, Ashour I et al (2014b) Remediation of NORM and TENORM contaminated sites–review article. Environ Prog Sustain Energy 33(2):588–596

    Article  CAS  Google Scholar 

  • Abdel Rahman RO, Rakhimov RZ, Rakhimova NR et al (2014c) Cementitious materials for nuclear waste immobilisation. Wiley, New York. ISBN 9781118512005

    Google Scholar 

  • Abdel Rahman RO, Guskov A, Kozak MW et al (2016) Recent evaluation of early radioactive disposal practice. In: Wang L, Wang MH, Hung YT, Shammas N (eds) Natural resources, control processes. Handbook of environmental engineering, vol 17. Springer, Cham, pp 371–400. https://doi.org/10.1007/978-3-319-26800-2_8

    Chapter  Google Scholar 

  • Abdel Rahman RO, Metwally SS, El-Kamash AM (2019) Life cycle of ion exchangers in nuclear industry: application and management of spent exchangers. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham, pp 3709–3732. https://doi.org/10.1007/978-3-319-68255-6_108

    Chapter  Google Scholar 

  • Adam V, Nowack B (2017) European country-specific probabilistic assessment of nanomaterial flows towards landfilling, incineration and recycling. Environ Sci Nano 4:1961–1973

    Article  CAS  Google Scholar 

  • Ameen S, Akhtar MS, Kim YS et al (2011) Nanocomposites of poly(1 naphthylamine)/SiO2 and poly(1-naphthylamine)/TiO2: comparative photocatalytic activity evaluation towards methylene blue dye. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb

  • Amini M, Rahimpour A, Jahanshahi M (2016) Forward osmosis application of modified TiO2-polyamide thin film nanocomposite membranes. Desalin Water Treat 57:14013–14023

    Article  CAS  Google Scholar 

  • Bahadar S, Alamry KA, Bifari EN et al (2015) Assessment of antibacterial cellulose nanocomposites for water permeability and salt rejection. J Ind Eng Chem 24:266–275

    Article  CAS  Google Scholar 

  • Blaney LM, Cinar S, Gupta AKS (2007) Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res 41:1603–1613

    Article  CAS  Google Scholar 

  • Chaurasia A, Suzhu Y, Henry CKF et al (2015) Properties and applications of polymer nanocomposite. In: Andrew YC (ed) Handbook of manufacturing engineering and technology. Springer, London, pp 43–98

    Google Scholar 

  • Colorado HA, Hiel C, Hahn HT (2011) Chemically bonded phosphate ceramics composites reinforced with graphite Nanoplatelets. Compos Part A 42:376–384

    Article  CAS  Google Scholar 

  • Commission notice on technical guidance on the classification of waste (2018) Official Journal of the European Union, C 124/01-c 124/134

    Google Scholar 

  • Commission of The European Communities Eurostat (2010) Guidance on classification of waste according to EWC-Stat categories, Supplement to the Manual for the Implementation of the Regulation (EC) No 2150/2002 on Waste Statistics, Version 2

    Google Scholar 

  • Dong TT, Luo HJ, Wang YP et al (2010) Stabilization of Fe–Pd bimetallic nanoparticles with sodium carboxymethyl cellulose for catalytic reduction of paranitrochlorobenzene in water. Desalination. https://doi.org/10.1016/j.desal

  • Duncan TV, Pillai K (2015) Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption. ACS Appl Mater Interfaces 7(1):20–39

    Article  CAS  Google Scholar 

  • EPA IE (2015) Waste Classification. https://www.epa.ie/pubs/reports/waste/stats/wasteclassification/EPA_Waste_Classification_2015_Web.pdf (Last Accssessed 19/8/2018)

  • EPA. Solidification/Stabilization and its application to waste materials, EPA/530/R-93/012, EPA

    Google Scholar 

  • Fard AK, McKay G, Buekenhoudt A et al (2018) Inorganic membranes: preparation and application for water treatment and desalination, materials. https://doi.org/10.3390/ma11010074

    Article  CAS  Google Scholar 

  • Fina A, Camino G (2011) Ignition mechanisms in polymers and polymer nanocomposites. Polym Adv Technol 22:1147–1155

    Article  CAS  Google Scholar 

  • Gasser MS, Mekhamer HS, Abdel Rahman RO (2016) Optimization of the utilization of Mg/Fe hydrotalcite like compounds in the removal of Sr(II) from aqueous solution. J Environ Chem Eng 4:4619–4630

    Article  CAS  Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    Article  CAS  Google Scholar 

  • Ginzburg VV, Weinhold JD, Jog PK et al (2009) Thermodynamics of polymer-clay nanocomposites revisited: compressible self-consistent field theory modeling of melt-intercalated organoclays. Macromolecules 44(22):9089–9095

    Article  CAS  Google Scholar 

  • Gmbh Ö (2008) Review of the European list of waste, final report

    Google Scholar 

  • Guo XJ, Chen FH (2005) Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ Sci Technol 39:6808–6818

    Article  CAS  Google Scholar 

  • Hashim A, Hadi A (2017) Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr J Phys 62(11):978–983

    Article  Google Scholar 

  • Hazardous wastes (2007) Industrial waste treatment contemporary practice and vision for the future (ed: Nemerow NL). pp 245–354. https://doi.org/10.1016/b978-012372493-9/50046-6

  • Hoek EMV, Pendergast MTM, Ghosh A K (2017) Nanotechnology-based membranes for water purification, street, sustich, duncan and savage. Nanotechnology applications for clean water, 2nd edn. https://doi.org/10.1016/B978-1-4557-3116-9.00009-3

    Chapter  Google Scholar 

  • Hong J, He Y (2012) Effects of nano sized zinc oxide on the performance of PVDF micro filtration membranes. Desalination 302:71–79

    Article  CAS  Google Scholar 

  • Hussain CM, Kharisov B (2017) Advanced environmental analysis-application of nanomaterials. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Hussain CM, Mishra AK (2018a) Nanotechnology in environmental science. Wiley-VCH Verlag Gmb H&Co. KGaA, Boschstr. Weinheim, Germany

    Google Scholar 

  • Hussain CM, Mishra AK (2018b) New polymer nanocomposites for environmental remediation. Elsevier, Amsterdam, Netherlands

    Chapter  Google Scholar 

  • Iketania K, Sunb RD, Tokib M et al (2003) Sol–gel-derived TiO2/poly (dimethylsiloxane) hybrid films and their photocatalytic activities. J Phys Chem Solids 64(3):507–513

    Article  Google Scholar 

  • Isawi H, El-sayed MH, Feng X et al (2016) Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles. Appl Surf Sci 385:268–281

    Article  CAS  Google Scholar 

  • Jang J, Lee DS (2016) Magnetic Prussian blue nanocomposites for effective cesium removal from aqueous solution. Ind Eng Chem Res 55(13):3852–3860

    Article  CAS  Google Scholar 

  • Kashiwagi T. Thermal and oxidative degradation of polymers. https://nvlpubs.nist.gov/nistpubs/sp958-lide/344-346.pdf

  • Kausar A (2018) Applications of polymer/grapheme nanocomposite membranes: a review. Mater Res Innov. https://doi.org/10.1080/14328917.2018.1456636

    Article  CAS  Google Scholar 

  • Keller AA, McFerran S, Lazareva A et al (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692–1708

    Article  Google Scholar 

  • Liang S, Xiao K, Mo Y (2012) A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J Membr Sci 394–395:184–192

    Article  CAS  Google Scholar 

  • Lin CJ, Liou YH, Lo SL (2009) Supported Pd/Sn bimetallic nanoparticles for reductive dechlorination of aqueous trichloroethylene. Chemosphere 74(2):314–319

    Article  CAS  Google Scholar 

  • Liu XW, Hu Q, Fang Z et al (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25(1):3–8

    Article  CAS  Google Scholar 

  • Lopez-Cuesta JM, Longuet C (2014) Thermal degradation, flammability, and potential toxicity of polymer nanocomposites. In: Njuguna H, Pielicowski K, Zhu H (eds) Health and environmental safety of nanomaterials. Woodhead, pp 278–310. https://doi.org/10.1533/9780857096678.3.278

    Chapter  Google Scholar 

  • Majka TM, Leszczyńska A, Pielichowski K (2016) Thermal stability and degradation of polymer nanocomposites. In: Huang X, Zhi C (eds) Polymer nanocomposites electrical and thermal properties. Springer, Cham, pp 167–190

    Google Scholar 

  • Manias E, Polizos G, Nakajima H et al (2006) Fundamentals of polymer nanocomposite technology. In: Morgan AB, Wilkie CA (eds) Flame retardant polymer

    Google Scholar 

  • Nambiar S, Osei EK, Yeow JTW (2013) Polymer nanocomposite-based shielding against diagnostic X-rays. J Appl Polym Sci. https://doi.org/10.1002/APP.37980

    Article  CAS  Google Scholar 

  • Ng LY, Abdul Wahab M, Leo CP et al (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33

    Article  CAS  Google Scholar 

  • Ngomsik AF, Bee A, Draye M et al (2005) Magnetic nano- and microparticles for metal removal and environmental applications: a review. C R Chim 8(6–7):963–970

    Article  CAS  Google Scholar 

  • Nishihora RK, Rudolph E, Quadri MGN, D. Hotza et al (2019) Asymmetric mullite membranes manufactured by phase-inversion tape casting from polymethylsiloxane and aluminum diacetate. https://doi.org/10.1016/j.memsci

  • Pan BC, Pan BJ, Zhang WM, et al (2007a) Chinese patent: CN 200710191355.3

    Google Scholar 

  • Pan BC, Zhang QR, Zhang WM et al (2007b) Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion. J Colloid Interface Sci 310:99–105

    Article  CAS  Google Scholar 

  • Pan BC, Su Q, Zhang W M et al (2008) Chinese patent: CN 101224408

    Google Scholar 

  • Pintilie SC, Tiron LG, Birsan IG et al (2017) Influence of ZnO nanoparticle size and concentration on the polysulfone membrane performance. Mater Plast 54:257–261

    Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569

    Article  CAS  Google Scholar 

  • Pourchez J, Chivas-Joly C, Longuet C et al (2018) End-of-life incineration of nanocomposites: new insights into nanofiller partitioning into byproducts and biological outcomes of airborne emission and residual ash. Environ Sci Nano 5:1951–1964

    Article  CAS  Google Scholar 

  • Rocher V, Siaugue JM, Cabuil V et al (2008) Removal of organic dyes by magnetic alginate beads. Water Res 42(4–5):1290–1298

    Article  CAS  Google Scholar 

  • Rule P, Balasubramanian K, Gonte RR (2014) Uranium (VI) remediation from aqueous environment using impregnated cellulose beads. J Environ Radioactiv 136:22–29

    Article  CAS  Google Scholar 

  • Shah P, Murthy CN (2013) Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J Membr Sci 437:90–98

    Article  CAS  Google Scholar 

  • Shen JN, Yu CC, Ruan HM et al (2013) Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization. J Membr Sci 442:18–26

    Article  CAS  Google Scholar 

  • Singh D, Sotiriou GA, Zhang F et al (2016) End-of-life thermal decomposition of nanoenabled polymers: effect of nanofiller loading and polymer matrix on by-products. Environ Sci Nano 3:1293–1305

    Article  CAS  Google Scholar 

  • Smith PA, Yeomans JA (2009) Benefits of fiber and particulate reinforcement. In: Rawlings RD (ed) Materials science and engineering. Encyclopedia of life support systems, vol 2. EOLSS, Oxford, pp 133–152

    Google Scholar 

  • Sotiriou GA, Singh D, Zhang F et al (2015) An integrated methodology for the assessment of environmental health implications during thermal decomposition of nano-enabled products. Environ Sci Nano 2:262–272

    Article  CAS  Google Scholar 

  • Sotiriou GA, Singh D, Zhang F et al (2016) Thermal decomposition of nano-enabled thermoplastics: possible environmental health and safety implications. J Hazard Mater 305:87–95

    Article  CAS  Google Scholar 

  • Spence R, Shi C (2004) Stabilization/solidification of hazardous, radioactive, and mixed wastes. CRC Press, Boca Raton, p 2205

    Book  Google Scholar 

  • Ursino C, Castro-Muñoz R, Drioli E et al (2018) Progress of nanocomposite membranes for water treatment. Membranes. https://doi.org/10.3390/membranes8020018

    Article  CAS  Google Scholar 

  • Vaia RA, Giannelis EP (1997) Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30(25):7990–7999

    Article  CAS  Google Scholar 

  • Wagner J (2000) Membrane filtration handbook practical tips and hints, 2nd edn. Osmonics, Inc

    Google Scholar 

  • Wang Q, Qian HJ, Yang YP et al (2010) Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. J Contam Hydrol 114(1–4):35–42

    Article  CAS  Google Scholar 

  • Wu LF, Ritchie SMC (2006) Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. Chemosphere 63(2):285–292

    Article  CAS  Google Scholar 

  • Xu X, Wang Q, Choi HC (2010) Encapsulation of iron nanoparticles with PVP nanofibrous membranes to maintain their catalytic activity. J Membr Sci 348:231–237

    Article  CAS  Google Scholar 

  • Zhang QR, Pan BC, Pan BJ et al (2008) Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr (HPO3S)2. Environ Sci Technol 42:4140–4145

    Article  CAS  Google Scholar 

  • Zhang M, Zhang K, de Gusseme B et al (2012) Biogenic silver nanoparticles (bio-Ag) decrease biofouling of bio-Ag0/PES nanocomposite membranes. Water Res 46:2077–2087

    Article  CAS  Google Scholar 

  • Zhang X, Wang Y, Liu Y et al (2014) Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Appl Surf Sci 316:333–340

    Article  CAS  Google Scholar 

  • Zhang Y, Wan Y, Shi Y et al (2016) Facile modification of thin-film composite nanofiltration membrane with silver nanoparticles for anti-biofouling. J Polym Res 23:105–114. https://doi.org/10.1007/s10965-016-0992-7

    Article  CAS  Google Scholar 

  • Zhao X, Li J, Liu C (2017) Improving the separation performance of the forward osmosis membrane based on the etched microstructure of the supporting layer. Desalination 408:102–109

    Article  CAS  Google Scholar 

  • Zhu H, Jiang R, Xiao L et al (2009) Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J Hazard Mater 169(1–3):933–940

    Article  CAS  Google Scholar 

  • Zouboulis AI, Katsoyiannis IA (2002) Arsenic removal using iron oxide loaded alginate beads. Ind Eng Chem Res 41:6149–6155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Abdel Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abdel Rahman, R.O., Abdel Moamen, O.A., El-Masry, E.H. (2019). Life Cycle of Polymer Nanocomposites Matrices in Hazardous Waste Treatment. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_50-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_50-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics