Skip to main content

Mollusk-Inspired 3D Printing of Polycarbonate via Fused Deposition Modelling

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

Mollusk shells, a natural bio composite with a hierarchical layered microarchitecture composed of mineral tablets and interleaved with organic biomaterials matrix has emerged as a promising alternative for the development of advanced functional and high-strength materials. It is widely acknowledged that the nature-mediated complex hierarchical intricacies in such design architecture are dimensionally a great challenge to imitate in artificial materials. However, the macroscopic illustration of architectonic principle possesses ability to render improved mechanical property in commercially available polymeric systems. In this context, the current study elucidates the macroscopic dimensional imitation of various mollusk architecture in polycarbonate via 3D printing by utilizing fused deposition modelling without utilizing interleaved biopolymer. The resulted architectures were subsequently compared for their impact, wear, and tensile characteristics and demonstrated that the exploration of complex laminar design strategy in polycarbonate elucidated ~48% augmentation in mechanical property compare to other hierarchical architecture like nacre, foliated, and complex cross laminar structure. It is envisioned that such design strategies in engineering polymers possess ability to open new avenue for further improving mechanical properties without altering their intrinsic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almqvist N, Thomson NH, Smith BL, Stucky GD, Morse DE, Hansma PK (1999) Methods for fabricating and characterizing a new generation of biomimetic materials 1 The first and second authors contributed equally to this work. 1. Mater Sci Eng C 7(1):37–43

    Article  Google Scholar 

  • Bennadji-Gridi F, Smith A, Bonnet J-P (2006) Montmorillonite based artificial nacre prepared via a drying process. Mater Sci Eng B 130(1–3):132–136

    Article  CAS  Google Scholar 

  • Brydson JA (1999) Plastics materials, Butterworth-Heinemann, Elsevier

    Google Scholar 

  • Carrión FJ, Arribas A, Bermúdez M-D, Guillamon A (2008) Physical and tribological properties of a new polycarbonate-organoclay nanocomposite. Eur Polym J 44(4):968–977

    Article  Google Scholar 

  • de Paula SM, Silveira M (2009) Studies on molluscan shells: contributions from microscopic and analytical methods. Micron 40(7):669–690

    Article  Google Scholar 

  • Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311(5760):515–518

    Article  CAS  Google Scholar 

  • Djumas L, Molotnikov A, Simon GP, Estrin Y (2016) Enhanced mechanical performance of bio-inspired hybrid structures utilizing topological interlocking geometry. Sci Rep 6:26706

    Article  CAS  Google Scholar 

  • Espinosa HD, Juster AL, Latourte FJ, Loh OY, Gregoire D, Zavattieri PD (2011) Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat Commun 2:173

    Article  Google Scholar 

  • Gu GX, Dimas L, Qin Z, Buehler MJ (2016) Optimization of composite fracture properties: method, validation, and applications. J Appl Mech 83(7):071006–071006-7

    Article  Google Scholar 

  • Heuer A, Fink D, Laraia V, Arias J, Calvert P, Kendall K, Messing G, Blackwell J, Rieke P, Thompson D et al (1992) Innovative materials processing strategies: a biomimetic approach. Science 255(5048):1098–1105

    Article  CAS  Google Scholar 

  • Hull D, Owen TW (1973) Interpretation of fracture surface features in polycarbonate. J Polym Sci Polym Phys Ed 11(10):2039–2055

    Article  CAS  Google Scholar 

  • Kilwon C, JaeHo Y, Byung I, Kang C, Eon P (2003) Notch sensitivity of polycarbonate and toughened polycarbonate. J Appl Polym Sci 89(11):3115–3121

    Article  Google Scholar 

  • Kobayashi I, Samata T (2006) Bivalve shell structure and organic matrix. Mater Sci Eng C 26(4):692–698

    Article  CAS  Google Scholar 

  • Long B, Wang C-A, Lin W, Huang Y, Sun J (2007) Polyacrylamide-clay nacre-like nanocomposites prepared by electrophoretic deposition. Compos Sci Technol 67(13):2770–2774

    Article  CAS  Google Scholar 

  • Manevitch OL, Rutledge GC (2004) Elastic properties of a single lamella of montmorillonite by molecular dynamics simulation. J Phys Chem B 108(4):1428–1435

    Article  CAS  Google Scholar 

  • Martin JJ, Fiore BE, Erb RM (2015) Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun 6:8641

    Article  Google Scholar 

  • Meyers MA, McKittrick J, Chen P-Y (2013) Structural biological materials: critical mechanics-materials connections. Science 339(6121):773–779

    Article  CAS  Google Scholar 

  • Mirzaeifar R, Dimas LS, Qin Z, Buehler MJ (2015) Defect-tolerant bioinspired hierarchical composites: simulation and experiment. ACS Biomater Sci Eng 1(5):295–304

    Article  CAS  Google Scholar 

  • Mishra N, Kandasubramanian B (2018) Biomimetic design of artificial materials inspired by iridescent nacre structure and its growth mechanism. Polym-Plast Technol Eng 57(15):1592–1606

    Article  CAS  Google Scholar 

  • Morgan RJ, O’Neal JE (1976) The relationship between the physical structure and the mechanical properties of polycarbonate. J Polym Sci Polym Phys Ed 14(6):1053–1076

    Article  CAS  Google Scholar 

  • Sarikaya M, Aksay IA (1995) Biomimetics. Design and processing of materials. Washington University of Seattle Department of Materials Science and Engineering. AIP Press, Woodbury

    Google Scholar 

  • Stempflé P, Bourrat X, Rousseau M, Lopez E, Takadoum J (2013) Nanotribology of nacre: anisotropic dissipation in a multiscale hybrid material. Tribol Int 63:250–264

    Article  Google Scholar 

  • Sundar VC, Yablon AD, Grazul JL, Ilan M, Aizenberg J (2003) Fibre-optical features of a glass sponge. Nature 424:899

    Article  CAS  Google Scholar 

  • Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6:454

    Article  CAS  Google Scholar 

  • Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO (2014) Bioinspired structural materials. Nat Mater 14:23

    Article  Google Scholar 

  • Wright SC, Fleck NA, Stronge WJ (1993) Ballistic impact of polycarbonate – an experimental investigation. Int J Impact Eng 13(1):1–20

    Article  Google Scholar 

  • Yadav R, Naebe M, Wang X, Kandasubramanian B (2017) Review on 3D prototyping of damage tolerant interdigitating brick arrays of nacre. Ind Eng Chem Res 56(38):10516–10525

    Article  CAS  Google Scholar 

  • Yadav R, Goud R, Dutta A, Wang X, Naebe M, Kandasubramanian B (2018) Biomimicking of hierarchal molluscan shell structure via layer by layer 3D printing. Ind Eng Chem Res 57(32):10832–10840

    Article  CAS  Google Scholar 

  • Yamaki T, Asai K (2001) Alternate multilayer deposition from ammonium amphiphiles and titanium dioxide crystalline nanosheets using the Langmuir−Blodgett technique. Langmuir 17(9):2564–2567

    Article  CAS  Google Scholar 

  • Zhang X, Liu C, Wu W, Wang J (2006) Evaporation-induced self-assembly of organic–inorganic ordered nanocomposite thin films that mimic nacre. Mater Lett 60(17–18):2086–2089

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minoo Naebe or Balasubramanian Kandasubramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Goud, R., Yadav, R., Wang, X., Naebe, M., Kandasubramanian, B. (2020). Mollusk-Inspired 3D Printing of Polycarbonate via Fused Deposition Modelling. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics