Skip to main content

3D Printing of Bioactive Devices for Clinical Medicine Applications

  • Living reference work entry
  • First Online:
  • 273 Accesses

Abstract

3D printing is rapidly improving the effectiveness of medical practice and will create many new treatment options including “personalized medical solutions” over the next decade. This future is certain as improvements in 3D printers and a growing portfolio of new materials are being leveraged to rapidly expand the impact of additive manufacturing. 3D printing’s ability to make optimized and customized parts that are very precise and complex will usher in an era of improved and novel biomedical and clinical applications. Fused deposition modeling (FDM) is an additive manufacturing technique that uses readily moldable materials such as thermopolymers. It is also possible to additively manufacture metals and ceramics; however, fabrication methods must evolve to enable printing of all three categories of materials interchangeably. 3D printing of biomedical constructs is primarily done using various thermoplastic polymers. The ability to extrude thermoplastic filaments for FDM fabrication methods has led to the creation of customized and bioactive filaments. This book chapter will focus on current advances in 3D printing of medical devices with an emphasis on device functionalization directed toward specific diseases and disorders. Specific sections will address the medical applications of 3D printing biomaterials and technologies; 3D-printed biomaterials in clinical applications; the state-of-the-art developments in dental and orthopedic surgery; the commercial development of materials, tools, their applications, and future developments; and how 3D printing will impact our future.

This is a preview of subscription content, log in via an institution.

References

  • Abdullah KA, Reed W (2018) 3D printing in medical imaging and healthcare services. J Med Radiat Sci 65(3):237–239. https://doi.org/10.1002/jmrs.292

    Article  Google Scholar 

  • Ahangar P, Cooke ME, Weber MH,Rosenzweig DH (2019) Current biomedical applications of 3D printing and additive manufacturing. Applied Sciences, 9(8), p.1713

    Article  Google Scholar 

  • Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B (2016) Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res 33(8):1817–1832

    Article  CAS  Google Scholar 

  • Ballard DH, Anthony PT, Sayed A, Taryn H, Matthew EZ, Carolynn MD, Stacy ES et al (2018) Clinical applications of 3D printing: primer for radiologists. Acad Radiol 25(1):52–65

    Article  Google Scholar 

  • Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718

    Article  CAS  Google Scholar 

  • Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162

    Article  Google Scholar 

  • Borovjagin AV, Ogle BM, Berry JL, Zhang J (2017) From microscale devices to 3D printing: advances in fabrication of 3D cardiovascular tissues. Circ Res 120(1):150–165. https://doi.org/10.1161/CIRCRESAHA.116.308538

    Article  CAS  Google Scholar 

  • Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1998) Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog 14:356–363

    Article  CAS  Google Scholar 

  • Chen CS, Alons JL, Ostuni E, Whitesides GM, Ingber DE (2003) Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun 307:355–361

    Article  CAS  Google Scholar 

  • Chung JH, Naficy S, Yue Z, Kapsa R, Quigley A, Moulton SE, Wallace GG (2013) Bio-ink properties and printability for extrusion printing living cells. Biomat Sci 1(7):763–773

    Article  CAS  Google Scholar 

  • Columbus L (2017) The state of 3D printing 2017. https://www.forbes.com/sites/louiscolumbus/2017/05/23/the-state-of-3d-printing-2017/#4608d4bd57eb

  • Core-Ballais M, Bensoussan H, Richardot A, Kusnadi H (2018) The state of 3D printing 2018.Sculpteo https://www.forbes.com/sites/louiscolumbus/2018/05/30/the-state-of-3d-printing-2018/

  • Crawford C (2016) Validation and verification for medical devices. https://www.asme.org/engineering-topics/articles/manufacturing-design/validation-verification-for-medical-devices

    Google Scholar 

  • Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338:921–925

    Article  CAS  Google Scholar 

  • Dias AD, Kingsley DM, Corr DT (2014) Recent advances in bioprinting and applications for biosensing. Biosensors 4:11–136

    Article  Google Scholar 

  • Domingos M, Intranuovo F, Russo T, Santis RD, Gloria A, Ambrosio L et al (2013) The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Biofabrication 5(4):45004

    Article  CAS  Google Scholar 

  • Embargo Group (2018) https://www.massdevice.com/china-cfda-proposes-regulatory-framework-for-3d-printed-medical-devices/

  • Fedorovich NE, Jacqueline A, Wim EH, Ör FC, JAD W (2011) Organ printing: the future of bone regeneration? Trends Biotechnol 29(12):601–606

    Article  CAS  Google Scholar 

  • Feygin M, Hsieh B (1991) Laminated object manufacturing (LOM): a simpler process. International Solid Freeform Fabrication symposium, Austin

    Google Scholar 

  • Flowers J, Moniz M (2002) Rapid prototyping in technology education. Proc SITE 62:7–11

    Google Scholar 

  • Garcia J, Yang Z, Mongrain R et al (2018) 3D printing materials and their use in medical education: a review of current technology and trends for the future. BMJ Simul Technol Enhanc Learn 24:27–40

    Article  Google Scholar 

  • Gatling R (2009) The regulation of medical devices. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=2ahUKEwiOu575p8viAhUIQK0KHaerCbQQFjACegQIBBAC&url=https%3A%2F%2Fwww.fda.gov%2Fmedia%2F89070%2Fdownload&usg=AOvVaw3E4PsfgxhhUpPI19O6JqN5

    Google Scholar 

  • Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215–243

    Article  Google Scholar 

  • Jensen J et al (2014) Surface-modified functionalized polycaprolactone scaffolds for bone repair: in vitro and in vivo experiments. J Biomed Mater Res A 102:2993–3003

    Article  Google Scholar 

  • Jijotiya D, Prabhu LV (2013) A survey of performance based advanced rapid prototyping techniques. Sch J Eng Tech 1.1: 4–12

    Google Scholar 

  • Johnson J (2016) FDA regulation of medical devices. Congressional Research Service 7-5700, www.crs.gov

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  CAS  Google Scholar 

  • Katz J, Tayek JA (1998) Gluconeogenesis and the Cori cycle in 12-, 20-, and 40-h-fasted humans. Am J Physiol Endocrinol Metab 275(3):E537–E542

    Article  CAS  Google Scholar 

  • Kim BS, Jang J, Chae S, Gao G, Kong J-S, Ahn M, Cho D-W (2016) Three-dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers. Biofabrication 8(3):035013

    Article  Google Scholar 

  • Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11(1):26–36

    Article  Google Scholar 

  • Lauer M, Barker JP, Solano M, Dubin J (2017) FDA device regulation. Mo Med 114(4):283–288

    Google Scholar 

  • Lee SJ et al (2016) Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater 40:182–191

    Article  CAS  Google Scholar 

  • Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2014) Revolutionary additive manufacturing: an overview. Lasers Eng 27(3/4):161–178

    Google Scholar 

  • Manavitehrani I, Fathi A, Badr H, Daly S, Ali Negahi Shirazi AN, Dehghani F (2016) Biomedical applications of biodegradable polyesters. Polymers 8:20. https://doi.org/10.3390/polym8010020

    Article  CAS  Google Scholar 

  • Mapili G, Lu Y, Chen S, Roy K (2005) Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J Biomed Mater Res Part B Appl Biomater 75:414–424

    Article  Google Scholar 

  • Mills DK (2015) Future medicine: the impact of 3D printing. J Nanomater Mol Nanotechnol 4(3):1–3

    Article  Google Scholar 

  • Murgu SD, Colt HG (2007) Complications of silicone stent insertion in patients with expiratory central airway collapse. Ann Thorac Surg 84(6):1870–1877

    Article  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798

    Article  CAS  Google Scholar 

  • Porter JR, Ruckh TT, Popat KC (2009) Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 25(6):1539–1560

    CAS  Google Scholar 

  • Sachs EM, Haggerty JS, Cima MJ, Williams PA (1994) Three-dimensional printing techniques. US Patent 5,204,055

    Google Scholar 

  • Schubert C, Van Langeveld MC, Donoso LA (2014) Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 98(2):159–161

    Article  Google Scholar 

  • Spottiswoode BS, Van den Heever DJ, Chang Y, Engelhardt S, Du Plessis S, Nicolls F, Hartzenberg HB, Gretschel A (2013) Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Stereotact Funct Neurosurg 91(3):162–169

    Article  CAS  Google Scholar 

  • Tham CY, Hamid ZAA, Ahmad ZA, Ismail H 2014 Surface engineered poly (lactic acid)(PLA) microspheres by chemical treatment for drug delivery system, vol. 594. Trans Tech Publications

    Google Scholar 

  • Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99(11):3181–3198

    Article  CAS  Google Scholar 

  • Ventola, CL (2014) Medical applications for 3D printing: current and projected uses. Pharmacy and Therapeutics 39(10):704

    Google Scholar 

  • Vert M, Li SM, Spenlehauer G, Guérin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3(6):432–446

    Article  CAS  Google Scholar 

  • Vieira AC, Vieira JC, Guedes RM, Marques AT (2010) Degradation and viscoelastic properties of PLA-PCL, PGA-PCL, PDO and PGA fibres. In: Materials science forum, vol 636. Trans Tech Publications, Aedermannsdorf, pp 825–832

    Google Scholar 

  • Weisman J, Nicholson C, Tappa K, Jammalamadaka U, Wilson C, Mills DK (2014) Antibiotic and chemotherapeutic enhanced 3D printer filaments and constructs for biomedical applications. Int J Nanomed 10:357–370

    Google Scholar 

  • Weisman JA, Jammalamadaka U, Tappa K, Nicholson JC, Ballard DH, Wilson CG, D’Agostino H, Mills DK (Feb. 2015) 3D printing antibiotic and chemotherapeutic eluting catheters and constructs. J Vasc Interv Radiol 26(2):S12

    Article  Google Scholar 

  • Weisman JA, Ballard DH, Jammalamadaka U, Tappa K, Sumerel J, D’Agostino HB, Mills DK, Woodard PK (2019) 3D printed antibiotic and chemotherapeutic eluting catheters for potential use in interventional radiology: in vitro proof of concept study. Acad Radiol 26(2):270–274

    Article  Google Scholar 

  • Whitaker M (2014) The history of 3D printing in healthcare. Bull R Coll Surg Engl 96:228–229

    Article  Google Scholar 

  • Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mechanical Engineering 2012. https://doi.org/10.5402/2012/208760

    Article  Google Scholar 

  • Wu AM, Wang K, Wang JS et al (2018) The addition of 3D printed models to enhance the teaching and learning of bone spatial anatomy and fractures for undergraduate students: a randomized controlled study. Ann Transl Med 6(20):403. https://doi.org/10.21037/atm.2018.09.59

    Article  Google Scholar 

  • Wuisman PIJM, Smit TH (2006) Bioresorbable polymers: heading for a new generation of spinal cages. Eur Spine J 15(2):133–148

    Article  CAS  Google Scholar 

  • Yeh C-H, Chen Y-W, Shie M-Y, Fang H-Y (2015) Poly (dopamine)-assisted immobilization of Xu Duan on 3D printed poly (lactic acid) scaffolds to up-regulate osteogenic and angiogenic markers of bone marrow stem cells. Materials (Basel) 8:4299–4315

    Article  CAS  Google Scholar 

  • Yu H, VandeVord PJ, Mao L, Matthew HW, Wooley PH, Yang SY (2009) Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials 30(4):508–517

    Article  CAS  Google Scholar 

  • Zein DWH, Tan KC, Teoh SH (Feb. 2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185

    Article  CAS  Google Scholar 

  • Zhang Y (2017) Post-printing surface modification and functionalization of 3D-printed biomedical device. Int J Bioprint 3:93–99

    Article  CAS  Google Scholar 

  • Zhang AP, Qu X, Soman P, Hribar K, Lee JW et al (2012) Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv Mater 24:4266–4270

    Article  CAS  Google Scholar 

  • Zhang B et al (2018) 3D bioprinting: an emerging technology full of opportunities and challenges Bio-Design and Manufacturing 3D bioprinting: an emerging technology full of opportunities and challenges. Bio Design Manuf 1:2–13

    Article  Google Scholar 

  • Zhou X, Zhu W, Nowicki M, Miao S, Cui H, Holmes B, Glazer RI, Zhang LG (2016) 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces 8(44):30017–30026

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the funding assistance provided by the Center for Dental, Oral and Craniofacial Tissue and Organ Regeneration (C-DOCTOR) with the support of NIH NIDCR (U24DE026914) and the Louisiana Biomedical Research Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Mills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McFarland, A.W., Lou, Y., Elumulai, A., Humayun, A., Mills, D.K. (2019). 3D Printing of Bioactive Devices for Clinical Medicine Applications. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics