Skip to main content

Effect of Mechanical Alloying in Polymer-Ceramics Composites

  • Living reference work entry
  • First Online:
Book cover Handbook of Polymer and Ceramic Nanotechnology
  • 201 Accesses

Abstract

The chapter presents polymer-ceramics composites using mechanical alloying (MA). Ceramics are classified as inorganic and nonmetallic materials that are essential to our daily lifestyle. Many ceramics, both oxides and non-oxides, are currently produced from polymer precursors. Ceramics generally has an amorphous or a nanocrystalline structure and has excellent structural stability, oxidation resistance, creep resistance, high-temperature mechanical properties, and good dielectric properties. Nevertheless, they have a fundamental weakness in that they are easily fractured and require high-temperature processes for the fabrication of integrated substrates. Composites are now one of the most important classes of engineered materials, because they offer several outstanding properties as compared to conventional materials. Composites are a fast-developing segment of the polymer industry; composites filled with materials having at least one dimension in the micro- and nanometer-size range such as nanofillers, nanoclays, or nanotubes and ceramics represent a step change in technology in the composite area. MA is a solid-state powder processing technique involving repeated welding, fracturing, and rewelding of powder particles in a high-energy ball mill. This technique was originally developed to produce oxide dispersion-strengthened (ODS) nickel- and iron-based superalloys for aerospace applications. MA has been substantiated to be capable of synthesizing a variety of equilibrium and nonequilibrium phases, including nanocrystalline and amorphous materials. Recently MA has been demonstrated to be the most versatile and economical process for the synthesis of nanocrystalline materials, due to its simplicity, low cost, and ability to produce large amount of material. The chapter focuses on the preparation processes; general microstructures; mechanical, chemical, electrical, and optical properties; and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abareshi M, Zebarjad SM, Goharshadi E (2009) Crystallinity behavior of MDPE-clay nanocomposites fabricated using ball milling method. J Compos Mater 43(23):2821–2830

    Article  CAS  Google Scholar 

  • Abareshi M, Zebarjad SM, Goharshadi EK (2010) Study of the morphology and granulometry of polyethylene–clay nanocomposite powders. J Vinyl Addit Technol 16(1):90–97

    Article  CAS  Google Scholar 

  • Agyei-Tuffour B et al (2014) Synthesis and microstructural characterization of kaolin–polyethylene composites. Polym Compos 35(8):1507–1515

    Article  CAS  Google Scholar 

  • Ajayan P et al (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin—nanotube composite. Science 265(5176):1212–1214

    Article  CAS  Google Scholar 

  • Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. Wiley

    Google Scholar 

  • Ambrosio-Martín J et al (2015) On the use of ball milling to develop PHBV–graphene nanocomposites (I)—Morphology, thermal properties, and thermal stability. J Appl Polym Sci 132(24)

    Google Scholar 

  • Awasthi K et al (2002) Ball-milled carbon and hydrogen storage. Int J Hydrog Energy 27(4):425–432

    Article  CAS  Google Scholar 

  • Azhdar B, Stenberg B, Kari L (2008) Polymer–nanofiller prepared by high-energy ball milling and high velocity cold compaction. Polym Compos 29(3):252–261

    Article  CAS  Google Scholar 

  • Balasubramanian M (2013) Composite materials and processing. CRC Press

    Google Scholar 

  • Baláž P et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42(18):7571–7637

    Article  CAS  Google Scholar 

  • Balogh G et al (2013) Preparation and characterization of in situ polymerized cyclic butylene terephthalate/graphene nanocomposites. J Mater Sci 48(6):2530–2535

    Article  CAS  Google Scholar 

  • Bao L, Jiang J (2005) Evolution of microstructure and phase of Fe3O4 in system of Fe3O4–polyaniline during high-energy ball milling. Phys B Condens Matter 367(1–4):182–187

    Article  CAS  Google Scholar 

  • Belitskus D (1993) Fiber and whisker reinforced ceramics for structural applications. CRC Press

    Google Scholar 

  • Benjamin JS (1970) Dispersion strengthened superalloys by mechanical alloying. Metall Trans 1(10):2943–2951

    CAS  Google Scholar 

  • Breval E, Dodds G, Pantano CG (1985) Properties and microstructure of Ni-alumina composite materials prepared by the sol/gel method. Mater Res Bull 20(10):1191–1205

    Article  CAS  Google Scholar 

  • Budin S et al (2009) Modeling of vial and ball motions for an effective mechanical milling process. J Mater Process Technol 209(9):4312–4319

    Article  Google Scholar 

  • Bunsell AR, Renard J (2005) Fundamentals of fibre reinforced composite materials. CRC Press

    Google Scholar 

  • Castrillo P et al (2007) Real dispersion of isolated fumed silica nanoparticles in highly filled PMMA prepared by high energy ball milling. J Colloid Interface Sci 308(2):318–324

    Article  CAS  Google Scholar 

  • Clauss B, Schawaller D (2006) Modern aspects of ceramic fiber development. In: Advances in science and technology. Trans Tech Publ

    Google Scholar 

  • Clyne T (1996) Interfacial effects in particulate, fibrous and layered composite materials. Trans Tech Publ

    Google Scholar 

  • Council N.R (2005) High-performance structural fibers for advanced polymer matrix composites. National Academies Press

    Google Scholar 

  • Delogu F, Gorrasi G, Sorrentino A (2017) Fabrication of polymer nanocomposites via ball milling: present status and future perspectives. Prog Mater Sci 86:75–126

    Article  CAS  Google Scholar 

  • Diez-Pascual A et al (2009) The influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites. Development and characterization of PEEK/CNT composites. Nanotechnology 20(31):315707

    Google Scholar 

  • Du J, Bai J, Cheng H (2007) The present status and key problems of carbon nanotube based polymer composites. Express Polym Lett 1(5):253–273

    Article  CAS  Google Scholar 

  • Feest E (1986) Metal matrix composites for industrial application. Mater Des 7(2):58–64

    Article  Google Scholar 

  • Fernandez-Bertran JF (1999) Mechanochemistry: an overview. Pure Appl Chem 71(4):581–586

    Article  CAS  Google Scholar 

  • Ferrara M et al (2007) Influence of the electrical field applied during thermal cycling on the conductivity of LLDPE/CNT composites. Physica E 37(1–2):66–71

    Article  CAS  Google Scholar 

  • Fried JR (2014) Polymer science and technology. Pearson Education

    Google Scholar 

  • Gao B et al (2000) Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem Phys Lett 327(1–2):69–75

    Article  CAS  Google Scholar 

  • Gay D, Hoa SV (2007) Composite materials: design and applications. CRC Press

    Google Scholar 

  • González-Benito J, González-Gaitano G (2008) Interfacial conformations and molecular structure of PMMA in PMMA/silica nanocomposites. Effect of high-energy ball milling. Macromolecules 41(13):4777–4785

    Article  CAS  Google Scholar 

  • Gorrasi G et al (2007) Incorporation of carbon nanotubes into polyethylene by high energy ball milling: morphology and physical properties. J Polym Sci B Polym Phys 45(5):597–606

    Article  CAS  Google Scholar 

  • Gorrasi G et al (2014) PET–halloysite nanotubes composites for packaging application: preparation, characterization and analysis of physical properties. Eur Polym J 61:145–156

    Article  CAS  Google Scholar 

  • Gotoh Y et al (2000) Preparation and structure of copper nanoparticle/poly (acrylic acid) composite films. J Mater Chem 10(11):2548–2552

    Article  CAS  Google Scholar 

  • Gupta RK, Murty B, Birbilis N (2017) High-energy ball milling parameters in production of nanocrystalline Al alloys. In: An overview of high-energy ball milled nanocrystalline aluminum alloys. Springer, pp 7–28

    Google Scholar 

  • Hedayati M et al (2011) Ball milling preparation and characterization of poly (ether ether ketone)/surface modified silica nanocomposite. Powder Technol 207(1–3):296–303

    Article  CAS  Google Scholar 

  • Hsu C-Y et al (2017) Mechanical properties of multi-walled carbon nanotube/peek polymer composites at nano scale, 21st International conference on composites materials

    Google Scholar 

  • Huang J, Yasuda H, Mori H (1999) Highly curved carbon nanostructures produced by ball-milling. Chem Phys Lett 303(1–2):130–134

    Article  CAS  Google Scholar 

  • Huang Y et al (2003) α-Fe–Al2O3 nanocomposites prepared by sol–gel method. Mater Sci Eng A 359(1–2):332–337

    Article  CAS  Google Scholar 

  • Huang HC et al (2012) Characterizations of UV-curable montmorillonite/epoxy nanocomposites prepared by a hybrid of chemical dispersion and planetary mechanical milling process. J Appl Polym Sci 123(6):3199–3207

    Article  CAS  Google Scholar 

  • Ichinose N et al (1987) Introduction to fine ceramics: applications in engineering. Wiley, Chichester/New York, p 169

    Google Scholar 

  • Jawaid M, Khan MM (2018) Polymer-based nanocomposites for energy and environmental applications. Woodhead Publishing

    Google Scholar 

  • Jung J et al (2010) Preparations and thermal properties of micro-and nano-BN dispersed HDPE composites. Thermochim Acta 499(1–2):8–14

    Article  CAS  Google Scholar 

  • Kanagaraj S et al (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67(15–16):3071–3077

    Article  CAS  Google Scholar 

  • Kim Y et al (2002) Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chem Phys Lett 355(3–4):279–284

    Article  CAS  Google Scholar 

  • Kingery WD (1976) Introduction to ceramics. Tylor and Francis

    Google Scholar 

  • Koch CC, Whittenberger J (1996) Mechanical milling/alloying of intermetallics. Intermetallics 4(5):339–355

    Article  CAS  Google Scholar 

  • Koo CM et al (2003) Characteristics of polyvinylpyrrolidone-layered silicate nanocomposites prepared by attrition ball milling. Polymer 44(3):681–689

    Article  CAS  Google Scholar 

  • Laurent C et al (1994) Fe–Cr/Al2O3 metal-ceramic composites: nature and size of the metal particles formed during hydrogen reduction. J Mater Res 9(1):229–235

    Article  CAS  Google Scholar 

  • Lee SM (1992) Handbook of composite reinforcements. Wiley

    Google Scholar 

  • Li Y et al (1999) Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon 37(3):493–497

    Article  CAS  Google Scholar 

  • Li C et al (2010) Preparation, characterization and thermal behavior of poly (vinyl alcohol)/organic montmorillonite nanocomposites through solid-state shear pan-milling. J Therm Anal Calorim 103(1):205–212

    Article  CAS  Google Scholar 

  • Lin IJ, Nadiv S (1979) Review of the phase transformation and synthesis of inorganic solids obtained by mechanical treatment (mechanochemical reactions). Mater Sci Eng 39(2):193–209

    Article  CAS  Google Scholar 

  • Lü L, Lai MO (2013) Mechanical alloying. Springer Science & Business Media

    Google Scholar 

  • Lu D, Pan S (2006) Effects of ball milling dispersion of nano-SiOx particles on impact strength and crystallization behavior of nano-SiOx–poly (phenylene sulfide) nanocomposites. Polym Eng Sci 46(6):820–825

    Article  CAS  Google Scholar 

  • Lu C, Wang Q (2004) Preparation of ultrafine polypropylene/iron composite powders through pan-milling. J Mater Process Technol 145(3):336–344

    Article  CAS  Google Scholar 

  • Lu HJ et al (2004) Epoxy/clay nanocomposites: further exfoliation of newly modified clay induced by shearing force of ball milling. Polym Int 53(10):1545–1553

    Article  CAS  Google Scholar 

  • Ma J et al (2002) Crystallization behaviors of polypropylene/montmorillonite nanocomposites. J Appl Polym Sci 83(9):1978–1985

    Article  CAS  Google Scholar 

  • Ma H et al (2003) Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Compos Sci Technol 63(11):1617–1628

    Article  CAS  Google Scholar 

  • Ma PC, Tang BZ, Kim J-K (2008) Conversion of semiconducting behavior of carbon nanotubes using ball milling. Chem Phys Lett 458(1–3):166–169

    Article  CAS  Google Scholar 

  • Ma PC et al (2009) In-situ amino functionalization of carbon nanotubes using ball milling. J Nanosci Nanotechnol 9(2):749–753

    Article  CAS  Google Scholar 

  • Ma et al 2010. Dispersion and functionalization of carbon nanotubes for polymer based nanocomposites. A review

    Google Scholar 

  • Mallick P (1993) Fiber-reinforced composites: materials. Manufacturing and design. Maneel Dekker Inc

    Google Scholar 

  • Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design. CRC Press

    Google Scholar 

  • Mazumdar S (2001) Composites manufacturing: materials, product, and process engineering. CRC Press

    Google Scholar 

  • Menzer K et al (2011) Percolation behaviour of multiwalled carbon nanotubes of altered length and primary agglomerate morphology in melt mixed isotactic polypropylene-based composites. Compos Sci Technol 71(16):1936–1943

    Article  CAS  Google Scholar 

  • M’Hamed MO, Alduaij OK (2016) Green and effective one-pot synthesis of 5-Oxo-pyrazolidine and 5-Amino-2, 3-dihydro-1H-Pyrazole derivatives through ball milling under catalyst-free and solvent-free conditions. Asian J Chem 28(3):543

    Article  CAS  Google Scholar 

  • Mio H et al (2002) Effects of rotational direction and rotation-to-revolution speed ratio in planetary ball milling. Mater Sci Eng A 332(1–2):75–80

    Article  Google Scholar 

  • Mio H, Kano J, Saito F (2004) Scale-up method of planetary ball mill. Chem Eng Sci 59(24):5909–5916

    Article  CAS  Google Scholar 

  • Mohanty P et al (2016) Utilization of chemically synthesized fine powders of SiC/Al2O3 composites for sintering. Mater Manuf Process 31(10):1311–1317

    Article  CAS  Google Scholar 

  • Moreira FKV, Marconcini JM, Mattoso LHC (2012) Solid state ball milling as a green strategy to improve the dispersion of cellulose nanowhiskers in starch-based thermoplastic matrices. Cellulose 19(6):2049–2056

    Article  CAS  Google Scholar 

  • Murty B, Ranganathan S (1998) Novel materials synthesis by mechanical alloying/milling. Int Mater Rev 43(3):101–141

    Article  CAS  Google Scholar 

  • Nathani H, Gubbala S, Misra R (2004) Magnetic behavior of nickel ferrite–polyethylene nanocomposites synthesized by mechanical milling process. Mater Sci Eng B 111(2–3):95–100

    Article  CAS  Google Scholar 

  • Niihara K (1991) New design concept of structural ceramics. J Ceram Soc Jpn 99(1154):974–982

    Article  CAS  Google Scholar 

  • Noboru I (1987) Introduction to fine ceramics (application in engineering). Wiley

    Google Scholar 

  • Noroozi M, Zebarjad SM (2010) Effects of multiwall carbon nanotubes on the thermal and mechanical properties of medium density polyethylene matrix nanocomposites produced by a mechanical milling method. J Vinyl Addit Technol 16(2):147–151

    CAS  Google Scholar 

  • Norton FH (1974) Elements of ceramics. Tylor and Francis

    Google Scholar 

  • Olmos D et al (2009) Crystallization and final morphology of HDPE: effect of the high energy ball milling and the presence of TiO2 nanoparticles. Polymer 50(7):1732–1742

    Article  CAS  Google Scholar 

  • Olmos D, Rodríguez-Gutiérrez E, González-Benito J (2012) Polymer structure and morphology of low density polyethylene filled with silica nanoparticles. Polym Compos 33(11):2009–2021

    Article  CAS  Google Scholar 

  • Olmos D, González-Gaitano G, González-Benito J (2015) Effect of a silica nanofiller on the structure, dynamics and thermostability of LDPE in LDPE/silica nanocomposites. RSC Adv 5(44):34979–34984

    Article  CAS  Google Scholar 

  • Pampuch R (1976) Ceramic materials: an introduction to their properties. Elsevier

    Google Scholar 

  • Pantaleón R, González-Benito J (2010) Structure and thermostability of PMMA in PMMA/silica nanocomposites: effect of high-energy ball milling and the amount of the nanofiller. Polym Compos 31(9):1585–1592

    Article  CAS  Google Scholar 

  • Park S-J, Seo M-K (2011) Interface science and composites, vol 18. Academic

    Google Scholar 

  • Perrin-Sarazin F et al (2009) Potential of ball milling to improve clay dispersion in nanocomposites. Polym Eng Sci 49(4):651–665

    Article  CAS  Google Scholar 

  • Pucciariello R, Villani V, Giammarino G (2011) Thermal behaviour of nanocomposites based on linear-low-density poly (ethylene) and carbon nanotubes prepared by high energy ball milling. J Polym Res 18(5):949–956

    Article  CAS  Google Scholar 

  • Raju P, Murthy S (2013) Preparation and characterization of Ni–Zn ferrite+ polymer nanocomposites using mechanical milling method. Appl Nanosci 3(6):469–475

    Article  CAS  Google Scholar 

  • Ramadan AR, Esawi AM, Gawad AA (2010) Effect of ball milling on the structure of Na+−montmorillonite and organo-montmorillonite (Cloisite 30B). Appl Clay Sci 47(3–4):196–202

    Article  CAS  Google Scholar 

  • Ramaseshan R et al (2007) Nanostructured ceramics by electrospinning. J Appl Phys 102(11):7

    Article  CAS  Google Scholar 

  • Rashidi S, Ataie A (2015) A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route. J Ultrafine Grained Nanostruct Mater 48(2):59–67

    Google Scholar 

  • Rashidi S, Ataie A (2016) Structural and magnetic characteristics of PVA/CoFe2O4 nano-composites prepared via mechanical alloying method. Mater Res Bull 80:321–328

    Article  CAS  Google Scholar 

  • Rayson M (1983) Encyclopedia of composite materials and composites. Wiley, New York

    Google Scholar 

  • Rodriguez B et al (2007) Solvent-free carbon-carbon bond formations in ball mills. Adv Synth Catal 349(14–15):2213–2233

    Article  CAS  Google Scholar 

  • Russell K, Hunter B, Heyding R (1997) Monoclinic polyethylene revisited. Polymer 38(6):1409–1414

    Article  CAS  Google Scholar 

  • Schadler LS, Braun PV (2002) Nanocomposite science and technology. Wiley VCH

    Google Scholar 

  • Searle AB, Grimshaw RW (1959) The chemistry and physics of clays and other ceramic materials. Tylor and Francis

    Google Scholar 

  • Serra-Gómez R, González-Gaitano G, González-Benito J (2012) Composites based on EVA and barium titanate submicrometric particles: preparation by high-energy ball milling and characterization. Polym Compos 33(9):1549–1556

    Article  CAS  Google Scholar 

  • Shao W, Wang Q, Ma H (2005) Study of polypropylene/montmorillonite nanocomposites prepared by solid-state shear compounding (S3C) using pan-mill equipment: the morphology of montmorillonite and thermal properties of the nanocomposites. Polym Int 54(2):336–341

    Article  CAS  Google Scholar 

  • Singer F (2013) Industrial ceramics. Springer

    Google Scholar 

  • Singh V, Tiwari A, Kulkarni A (1996) Electrical behaviour of attritor processed Al/PMMA composites. Mater Sci Eng B 41(3):310–313

    Article  Google Scholar 

  • Sorrentino A et al (2005) Incorporation of Mg–Al hydrotalcite into a biodegradable poly (ε-caprolactone) by high energy ball milling. Polymer 46(5):1601–1608

    Article  CAS  Google Scholar 

  • Sperling LH, Sperling LH (2006) Introduction to physical polymer science, vol 78. Wiley Online Library

    Google Scholar 

  • Sternitzke M (1997) Structural ceramic nanocomposites. J Eur Ceram Soc 17(9):1061–1082

    Article  CAS  Google Scholar 

  • Sternitzke M et al (1997) Surface mechanical properties of alumina matrix nanocomposites. Acta Mater 45(10):3963–3973

    Article  CAS  Google Scholar 

  • Strong AB, Strong B (2000) Plastics: materials and processing. Tylor and Francis

    Google Scholar 

  • Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184

    Article  CAS  Google Scholar 

  • Tadayyon G, Zebarjad S, Sajjadi S (2011) Effect of mechanical milling on the thermal behavior of polyethylene reinforced with nano-sized alumina. Int Polym Process 26(4):354–360

    Article  CAS  Google Scholar 

  • Takacs L (2002) Self-sustaining reactions induced by ball milling. Prog Mater Sci 47(4):355–414

    Article  CAS  Google Scholar 

  • Terife G, Narh KA (2011) Properties of carbon nanotube reinforced linear low density polyethylene nanocomposites fabricated by cryogenic ball-milling. Polym Compos 32(12):2101–2109

    Article  CAS  Google Scholar 

  • Thess A et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487

    Article  CAS  Google Scholar 

  • Thomas S et al (2012) Polymer composites: volume 1. Trans R Soc Lond 1805(95):65–87

    Google Scholar 

  • Tu H, Ye L (2009) Thermal conductive PS/graphite composites. Polym Adv Technol 20(1):21–27

    Article  CAS  Google Scholar 

  • Vadivel M et al (2017) Enhanced dielectric and magnetic properties of polystyrene added CoFe2O4 magnetic nanoparticles. J Phys Chem Solids 102:1–11

    Article  CAS  Google Scholar 

  • Veniale F (1990) Ceramic applications of clays and clay minerals. State-of-the-art and perspectives. In: Ceramics today–tomorrow’s ceramics. Proceedings of 7th international meeting on modern ceramics technologies (7th CIMTEC–World Ceramics Congress). Part A Montecatini Terme, 24–30 June 1990

    Google Scholar 

  • Vertuccio L et al (2009) Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym 75(1):172–179

    Article  CAS  Google Scholar 

  • Wang Y et al (2005) Study on the preparation and characterization of ultra-high molecular weight polyethylene–carbon nanotubes composite fiber. Compos Sci Technol 65(5):793–797

    Article  CAS  Google Scholar 

  • Wang G, Chen Y, Wang Q (2008) Structure and properties of poly (ethylene terephthalate)/Na+−montmorillonite nanocomposites prepared by solid state shear milling (S3M) method. J Polym Sci B Polym Phys 46(8):807–817

    Article  CAS  Google Scholar 

  • Wang Z et al (2010) Fabrication of carbon fiber reinforced ceramic matrix composites with improved oxidation resistance using boron as active filler. J Eur Ceram Soc 30(3):787–792

    Article  CAS  Google Scholar 

  • Wang R-M, Zheng S-R, Zheng YG (2011) Polymer matrix composites and technology. Elsevier

    Google Scholar 

  • Wu H et al (2011) One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J Mater Chem 21(24):8626–8632

    Article  CAS  Google Scholar 

  • Wu H, Zhao W, Chen G (2012) One-pot in situ ball milling preparation of polymer/graphene nanocomposites. J Appl Polym Sci 125(5):3899–3903

    Article  CAS  Google Scholar 

  • Xiao K, Zhang L, Zarudi I (2007) Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Compos Sci Technol 67(2):177–182

    Article  CAS  Google Scholar 

  • Yang K et al (2006) Mechanical properties and morphologies of polypropylene with different sizes of calcium carbonate particles. Polym Compos 27(4):443–450

    Article  CAS  Google Scholar 

  • Yang W et al (2018) Effects of high energy ball milling on mechanical and interfacial properties of PBT/nano-Sb2O3 composites. J Adhes Sci Technol 32(3):291–301

    Article  CAS  Google Scholar 

  • Yang W et al (2019) Preparation and characterization of nano-Sb2O3/poly (butylene terephthalate) composite powders based on high-energy ball milling. J Vinyl Addit Technol 25(1):91–97

    Article  CAS  Google Scholar 

  • Zhang D (2004) Processing of advanced materials using high-energy mechanical milling. Prog Mater Sci 49(3–4):537–560

    Article  CAS  Google Scholar 

  • Zhang G et al (2008) Tensile and tribological behaviors of PEEK/nano-SiO2 composites compounded using a ball milling technique. Compos Sci Technol 68(15–16):3073–3080

    Article  CAS  Google Scholar 

  • Zhu Y et al (2006a) PET/SiO2 nanocomposites prepared by cryomilling. J Polym Sci B Polym Phys 44(8):1161–1167

    Article  CAS  Google Scholar 

  • Zhu Y et al (2006b) Abs/iron nanocomposites prepared by cryomilling. J Appl Polym Sci 99(2):501–505

    Article  CAS  Google Scholar 

  • Zhu Y et al (2006c) Polyaniline/iron nanocomposites prepared by cryomilling. J Polym Sci B Polym Phys 44(21):3157–3164

    Article  CAS  Google Scholar 

  • Zhu Y, Li Z, Zhang D (2008) Electromagnetic nanocomposites prepared by cryomilling of polyaniline and Fe nanoparticles. J Polym Sci B Polym Phys 46(15):1571–1576

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Khumalo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khumalo, M.V., Khoathane, M.C. (2019). Effect of Mechanical Alloying in Polymer-Ceramics Composites. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics