Skip to main content

Sedimentary Basins

  • Living reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 162 Accesses

Definition

Sedimentary basins are regions of prolonged subsidence of the Earth’s surface that provide the accommodation space for mineral and organic material (Allen and Allen 2013). These deposits – the sedimentary rocks – are the record of the past geological history including tectonic events, climatic conditions, changes in sea level, and other environmental modifications. In addition, sedimentary basins are long-lived, low-temperature geo-reactors in which the accumulated material experiences a variety of transformations (Bjorlykke 2010; Littke et al. 2008; Roure et al. 2009; Welte et al. 1997). As a result of these processes, basins contain our resources of fossil fuels, groundwater, and inorganic commodities. Moreover, they are important reservoirs of heat and provide repositories for different socioeconomically relevant fluids such as CO2, H2, and CH4.

Basin Types

Basins can be classified in terms of their plate-tectonic setting. The plate-tectonic Wilson cycle (Fig. 1)...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Afonso JC et al (2010) On the Vp/Vs-Mg# correlation in mantle peridotites: implications for the identification of thermal and compositional anomalies in the upper mantle. Earth Planet Sci Lett 289(3–4):606–618

    Article  Google Scholar 

  • Allen P, Allen J (2005) Basin analysis. Principles and applications. Blackwell Science, Oxford, p 560

    Google Scholar 

  • Allen PA, Allen JR (2013) Basin analysis: principles and application to petroleum play assessment, 3rd edn. Wiley-Blackwell Science, Oxford

    Google Scholar 

  • Andriessen PAM (1995) Fission-track analysis: principles, methodology and implications for tectono-thermal histories of sedimentary basins, orogenic belts, and continental margins. Geol Mijnb 74:1–12

    Google Scholar 

  • Artemieva IM (2009) The continental lithosphere: reconciling thermal, seismic, and petrologic data. Lithos 109:23–46

    Article  Google Scholar 

  • Bauer K et al (2000) Deep structure of the Namibia continental margin as derived from integrated geophysical studies. J Geophys Res 105(B11):25,829–25,853

    Article  Google Scholar 

  • Bayer U, Grad M, Pharaoh TC, Thybo H, Guterch A, Banka D, Lamarche J, Lassen A, Lewerenz B, Scheck M, Marotta AM (2002) The southern margin of the East European Craton: new results from seismic sounding and potential fields between the North Sea and Poland. Tectonophysics 360:301–314

    Article  Google Scholar 

  • Bjorlykke K (2010) Heat transport in sedimentary basins, petroleum geoscience. Springer, Berlin, pp 253–257

    Book  Google Scholar 

  • Braun J (2005) Quantitative constraints on the rate of landform evolution derived from low-temperature thermochrohonology, low-temperature thermochronology: techniques, interpretations, and applications. Rev Mineral Geochem 58:351–374

    Article  Google Scholar 

  • Braun J, van der Beek P (2004) Evolution of passive margin escarpments: what can we learn from low-temperature thermochronology? J Geophys Res Earth Surf 109:F04009

    Article  Google Scholar 

  • Braun J et al (2008) DOUAR: a new three-dimensional creeping flow numerical model for the solution of geological problems. Phys Earth Planet Inter 171(1–4):76–91

    Article  Google Scholar 

  • Brune S (2018) Forces within continental and oceanic rifts: numerical modeling elucidates the impact of asthenospheric flow on surface stress. Geology 46(2):191–192

    Article  Google Scholar 

  • Buck WR (1991) Modes of continental lithospheric extension. J Geophys Res 96(B12):20.161–20.178

    Article  Google Scholar 

  • Buiter S (2014) How plumes help to break plates. Nature (News & Views) 513:36–37

    Article  Google Scholar 

  • Burg JP, Gerya TV (2008) Modelling intrusion of mafic and ultramafic magma into the continental crust: numerical methodology and results. Boll Soc Geol Ital 127(2):199–203

    Google Scholar 

  • Burov EB (2011) Rheology and strength of the lithosphere. Mar Pet Geol 28:1402–1443

    Article  Google Scholar 

  • Burov E, Gerya T (2014) Asymmetric three-dimensional topography over mantle plumes. Nature 513. https://doi.org/10.1038/nature13703

    Article  Google Scholar 

  • Burov E, Cloetingh S (2009) Controls of mantle plumes and lithospheric folding on modes of intraplate continental tectonics: differences and similarities. Geophys J Int 178(3):1691–1722

    Article  Google Scholar 

  • Burov EB, Diament M (1992) Flexure of the continental lithosphere with multilayered rheology. Geophys J Int 109:449–468

    Article  Google Scholar 

  • Cacace M, Scheck-Wenderoth M (2016) Why intracontinental basins subside longer: 3-D feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere. J Geophys Res 121(5):3742–3761

    Article  Google Scholar 

  • Cacace M, Kaiser BO, Lewerenz B, Scheck-Wenderoth M (2010) Geothermal energy in sedimentary basins: what we can learn from regional numerical models. Chem Erde-Geochem 70:33–46

    Article  Google Scholar 

  • Catuneanu O (2006) Principles of sequence stratigraphy. Elsevier, New York, p 386

    Google Scholar 

  • Cermak V, Rybach L (1982) Thermal properties: thermal conductivity and specific heat of minerals and rocks. In: Angenheister G (ed) Landolt-Börnstein, new series, geophysics and space research. Springer, Berlin, pp 305–343

    Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100(B7):9761–9788

    Article  Google Scholar 

  • Cloetingh S, Burov E (2010) Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Res. https://doi.org/10.1111/j.1365-2117.2010.00490.x

    Article  Google Scholar 

  • Cloetingh S, Boldreel LO, Larsen BT, Heinesen M, Mortensen L (1998) Tectonics of sedimentary basin formation: models and constraints. Tectonophysics 300(I–IV):1–11

    Article  Google Scholar 

  • Contrucci I et al (2004) Deep structure of the West African continental margin (Congo, Zaire, Angola), between 5 degrees S and 8 degrees S, from reflection/refraction seismics and gravity data. Geophys J Int 158(2):529–553

    Article  Google Scholar 

  • Cooper MA, Williams GD (1989) Inversion tectonics. Geological society special publication classics. The Geological Society of London, London

    Google Scholar 

  • Crosby AG, McKenzie D, Sclater JG (2006) The relationship between depth, age and gravity in the oceans. Geophys J Int 166(2):553–573

    Article  Google Scholar 

  • Dalton CA, Faul UH (2010) The oceanic and cratonic upper mantle: clues from joint interpretation of global velocity and attenuation models. Lithos 120(1–2):160–172

    Article  Google Scholar 

  • DEKORP-BASIN Research Group (1999) Deep crustal structure of the Northeast German basin: new DEKORP-BASIN’96 deep-profiling results. Geology 27(1):55–58

    Article  Google Scholar 

  • Eaton DW et al (2009) The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons. Lithos 109(1–2):1–22

    Article  Google Scholar 

  • Ebbing J, Gernigon L, Pascal C, Olesen O, Osmundsen PT (2009) A discussion of structural and thermal control of magnetic anomalies on the mid-Norwegian margin. Geophys Prospect 57(4):665–681

    Article  Google Scholar 

  • Einsele G, Ricken W, Seilacher A (1991) Cycles and events in stratigraphy – basic concepts and terms. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 1–19

    Google Scholar 

  • Faleide JI et al (2008) Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes 31(1):82–91

    Article  Google Scholar 

  • Fernàndez M et al (2005) Lithospheric structure of the mid-Norwegian margin; comparison between the More and Voring margins. J Geol Soc Lond 162(6):1005–1012

    Article  Google Scholar 

  • Fernàndez M, Afonso JC, Ranalli G (2010) The deep lithospheric structure of the Namibian volcanic margin. Tectonophysics 481(1–4):68–81

    Article  Google Scholar 

  • Fichtner A, van Herwaarden DP, Afanasiev M, Simute S, Krischer L, Cubuk-Sabuncu Y, Taymaz T, Colli, L, Saygin E, Villasenor A, Trampert J, Cupillard P, Bunge H-P, Igel H (2018) The collaborative seismic earth model: generation I. Geophys Res Lett 45. https://doi.org/10.1029/2018GL077338

    Article  Google Scholar 

  • Fishwick S (2010) Surface wave tomography: imaging of the lithosphere-asthenosphere boundary beneath central and southern Africa? Lithos 120(1–2):63–73

    Article  Google Scholar 

  • Förster A, Förster H-J (2000) Crustal composition and mantle heat flow: implications from surface heat flow and radiogenic heat production in the Variscian Erzbgebirge. J Geophys Res 105(B12):917–938

    Article  Google Scholar 

  • Fowler CMR (1996) The solid earth. Cambridge University Press, Cambridge, p 472

    Google Scholar 

  • Franke D, Neben S, Ladage S, Schreckenberger B, Hinz K (2007) Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Mar Geol 244(1–4):46–67

    Article  Google Scholar 

  • Freymark J, Sippel J, Scheck-Wenderoth M, Bär K, Stiller M, Fritsche J, Kracht M (2017) The deep thermal field of the Upper Rhine Graben. Tectonophysics 694:114–129

    Article  Google Scholar 

  • Garcia-Castellanos D (2002) Interplay between lithospheric flexure and river transport in foreland basins. Basin Res 14(2):89–104

    Article  Google Scholar 

  • Geissler WH, Sodoudi F, Kind R (2010) Thickness of the central and eastern European lithosphere as seen by S receiver functions. Geophys J Int 181(2):604–634

    Google Scholar 

  • Gholamrezaie E, Scheck-Wenderoth M, Sippel J, Strecker MR (2018) Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the southwest African and the Norwegian margins. Solid Earth 9:139–158

    Article  Google Scholar 

  • Goutorbe BLF, Bonneville A (2008) The thermal regime of South African continental margins. Earth Planet Sci Lett 267(1–2):256–265

    Article  Google Scholar 

  • Gürbüz A (2014) Pull-apart basin. In: Harff J, Meschede M, Petersen S, Thiede J (eds) Encyclopedia of marine geosciences. Springer, Dordrecht

    Google Scholar 

  • Hasterok D, Chapman DS (2007) Continental thermal isostasy: 1. Methods and sensitivity. J Geophys Res 112(B6):B06414

    Google Scholar 

  • Haxby WF, Turcotte DL, Bird JM (1976) Thermal and mechanical evolution of the Michigan Basin. Tectonophysics 36(1–3):57–75

    Article  Google Scholar 

  • Heine C, Dietmar Müller R, Steinberger B, Torsvik TH (2008) Subsidence in intracontinental basins due to dynamic topography. Phys Earth Planet Inter 171(1–4):252–264

    Article  Google Scholar 

  • Heintz M, Kennett BLN (2005) Continental scale shear wave splitting analysis: investigation of seismic anisotropy underneath the Australian continent. Earth Planet Sci Lett 236(1–2):106–119

    Article  Google Scholar 

  • Hieronymus CF, Goes S (2010) Complex cratonic seismic structure from thermal models of the lithosphere: effects of variations in deep radiogenic heating. Geophys J Int 180(3):999–1012

    Article  Google Scholar 

  • Hirsch KK, Bauer K, Scheck-Wenderoth M (2009) Deep structure of the western South African passive margin – results of a combined approach of seismic, gravity and isostatic investigations. Tectonophysics 470(1–2):57–70

    Article  Google Scholar 

  • Hudec MR, Jackson MPA (2007) Terra infirma: understanding salt tectonics. Earth-Sci Rev 82(1–2):1–28

    Article  Google Scholar 

  • Huenges E (2010) Geothermal energy systems: exploration, development and utilization. Wiley-VCH, Weinheim, p 464

    Book  Google Scholar 

  • Huismans RS, Beaumont C (2008) Complex rifted continental margins explained by dynamical models of depth-dependent lithospheric extension. Geology 36(2):163–166

    Article  Google Scholar 

  • Huismans RS, Buiter SJH, Beaumont C (2005) Effect of plastic-viscous layering and strain softening on mode selection during lithospheric extension. J Geophys Res 110:B02406

    Article  Google Scholar 

  • Hyndman RD, Currie CA, Mazzotti S, Frederiksen A (2009) Temperature control of continental lithosphere elastic thickness, Te vs Vs. Earth Planet Sci Lett 277(3–4):539–548

    Article  Google Scholar 

  • Jones AG, Plomerova J, Korja T, Sodoudi F, Spakman W (2010) Europe from the bottom up: a statistical examination of the central and northern European lithosphere-asthenosphere boundary from comparing seismological and electromagnetic observations. Lithos 120(1–2):14–29

    Article  Google Scholar 

  • Kaban MK, Schwintzer P, Artemieva IM, Mooney WD (2003) Density of the continental roots; compositional and thermal contributions. Earth Planet Sci Lett 209(1–2):53–69

    Article  Google Scholar 

  • Kaus BJP, Connolly JAD, Podladchikov YY, Schmalholz SM (2005) Effect of mineral phase transitions on sedimentary basin subsidence and uplift. Earth Planet Sci Lett 233(1–2):213–228

    Article  Google Scholar 

  • Kley J, Franzke H-J, Jähne F, Krawczyk C, Lohr T, Reicherter K, Scheck-Wenderoth M, Sippel J, Tanner D, van Gent H (2008) Strain and stress. In: Littke RB, Baeyer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins. The Central European Basin System. Springer, Berlin, pp 97–124

    Google Scholar 

  • Kounov A et al (2007) Present denudation rates at selected sections of the South African escarpment and the elevated continental interior based on cosmogenic 3He and 21Ne. S Afr J Geol 110(2/3):235–248

    Article  Google Scholar 

  • Kovács I, Lenkey L, Green DH, Fancsik T, Falus G, Kiss J, Orosz L, Angyal J, Vikor Z (2018) The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle. Acta Geodaet Geophys 52(2):183–204

    Article  Google Scholar 

  • Kusznir NJ, Ziegler PA (1992) The mechanics of continental extension and sedimentary basin formation: a simple-shear/pure-shear flexual cantilever model. Tectonophysics 215:117–131

    Article  Google Scholar 

  • Lavier LL, Steckler MS (1997) The effect of sedimentary cover on the flexural strength of continental lithosphere. Nature 389:476–479

    Article  Google Scholar 

  • Lavier LL, Buck WR, Poliakov ANB (1999) Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology 27(12):1127–1130

    Article  Google Scholar 

  • Le Pourhiet L, Chamot-Rooke N, Delescluse M, May DA, Watremez L, Manuel Pubellier M (2018) Continental break-up of the South China Sea stalled by far-field compression. Nat Geosci 11:605–609

    Article  Google Scholar 

  • Levander A, Niu F, Lee C-TA, Cheng X (2006) Imag(in)ing the continental lithosphere. Tectonophysics 416(1–4):167–185

    Article  Google Scholar 

  • Lister GS, Etheridge MA, Symonds PA (1986) Datachement faulting and the evolution of passive margins. Geology 14:246–250

    Article  Google Scholar 

  • Littke R, Bayer U, Gajewski D, Nelskamp S (2008) Dynamics of complex intracontinental basins: the Central European Basin System. Springer, Berlin

    Book  Google Scholar 

  • Lucazeau F (2019) Analysis and mapping of an updated terrestrial heat flow data set. Geochem Geophys Geosyst 20:4001–4024. https://doi.org/10.1029/2019GC008389

    Article  Google Scholar 

  • Majorowicz J, Å afanda J (2018) Large regional variability of recent climatic change driven sub-surface temperature changes as derived from temperature logs-central Canada example. Int J Earth Sci 107(1):123–135

    Article  Google Scholar 

  • Maystrenko Y, Scheck-Wenderoth M (2009) Density contrasts in the upper mantle and lower crust across the continent-ocean transition: constraints from 3-D gravity modelling at the Norwegian margin. Geophys J Int 179(1):536–548

    Article  Google Scholar 

  • Maystrenko YP, Scheck-Wenderoth M, Hartwig A, Anka Z, Watts AB, Hirsch KK (2013) Structural features of the Southwest African continental margin according to results of lithosphere-scale 3D gravity and thermal modelling. Tectonophysics 604:104–121

    Article  Google Scholar 

  • Mazur S, Scheck-Wenderoth M, Krzywiec P (2005) Different modes of the late cretaceous-early tertiary inversion in the North German and Polish basins. Int J Earth Sci 94(5–6):782–798

    Article  Google Scholar 

  • McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32

    Article  Google Scholar 

  • Meissner R, DEKORP Research Group (1991) The DEKORP surveys: major results in tectonic and reflective styles. In: Meissner R et al (eds) Continental lithosphere: deep seismic reflections. American Geophysical Union, Washington, DC, pp 69–76

    Chapter  Google Scholar 

  • Mjelde R et al (2002) Lower crustal seismic velocity-anomalies; magmatic underplating or serpentinized peridotite? Evidence from the Voring Margin, NE Atlantic. Marine Geophysical Researches 23(2):169–183

    Article  Google Scholar 

  • Mjelde R et al (2003) V (sub p)/V (sub s) ratio along the Voring Margin, NE Atlantic, derived from OBS data; implications on lithology and stress field. Tectonophysics 369(3–4):175–197

    Article  Google Scholar 

  • Mjelde R et al (2005) Continent-ocean transition on the Vøring Plateau, NE Atlantic, derived from densely sampled ocean bottom seismometer data. J Geophys Res 110:B05101. https://doi.org/10.1029/2004JB003026.

    Article  Google Scholar 

  • Nielsen L, Thybo H (2006) Identification of crustal and upper mantle heterogeneity by modelling of controlled-source seismic data. Tectonophysics 416(1–4):209–228

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (2010) The continental lithosphere-asthenosphere boundary: can we sample it? Lithos 120(1–2):1–13

    Article  Google Scholar 

  • Osmundsen PT, Ebbing J (2008) Styles of extension offshore mid-Norway and implications for mechanisms of crustal thinning at passive margins. Tectonics 27(6):TC6016

    Article  Google Scholar 

  • Parsons B, Sclater JG (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J Geophys Res 82(5):803–827

    Article  Google Scholar 

  • Pascal C, Cloetingh SAPL (2002) Rifting in heterogeneous lithosphere: inferences from numerical modelling of the northern North Sea and the Oslo Graben. Tectonics 21(6):1060–1071

    Article  Google Scholar 

  • Pérez-Gussinyé M, Morgan JP, Reston TJ, Ranero CR (2006) The rift to drift transition at non-volcanic margins: insights from numerical modelling. Earth Planet Sci Lett 244(1–2):458–473

    Article  Google Scholar 

  • Petrunin AG, Sobolev SV (2008) Three-dimensional numerical models of the evolution of pull-apart basins. Phys Earth Planet Inter 171(1–4):387–399

    Article  Google Scholar 

  • Plomerová J, Babuska V (2010) Long memory of mantle lithosphere fabric – European LAB constrained from seismic anisotropy. Lithos 120(1–2):131–143

    Article  Google Scholar 

  • Priestley K, McKenzie DP (2013) The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth Planet Sci Lett 381:78–91

    Article  Google Scholar 

  • Priestley K, McKenzie D, Debayle E (2006) The state of the upper mantle beneath southern Africa. Tectonophysics 416(1–4):101–112

    Article  Google Scholar 

  • Przybycin AM, Scheck-Wenderoth M, Schneider M (2015) The 3D conductive thermal field of the North Alpine Foreland Basin: influence of the deep structure and the adjacent European Alps. Geotherm Energy 3:17

    Article  Google Scholar 

  • Ritter U, Zielinski GW, Weiss HM, Zielinski RLB, Sættem J (2004) Heat flow in the Vøring basin, mid-Norwegian shelf. Pet Geosci 10:353–365

    Article  Google Scholar 

  • Ritzmann O, Faleide JI (2009) The crust and mantle lithosphere in the Barents Sea/Kara Sea region. Tectonophysics 470(1–2):89–104

    Article  Google Scholar 

  • Roure F, Cloetingh S, Scheck-Wenderoth M, Ziegler PA (2009) Achievements and challenges in sedimentary basin dynamics: a review. In: Cloetingh S, Negendank J (eds) New frontiers in integrated solid earth sciences. International year of planet earth. Springer, Dordrecht, pp 145–233

    Chapter  Google Scholar 

  • Royden L, Keen CE (1980) Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth Planet Sci Lett 51:343–361

    Article  Google Scholar 

  • Rychert CA, Shearer PM (2009) A global view of the lithosphere-asthenosphere boundary. Science 324(5926):495–498. ISSN:0036-8075, 1095-9203

    Article  Google Scholar 

  • Sandiford M (1999) Mechanics of basin inversion. Tectonophysics 305:109–120

    Article  Google Scholar 

  • Schaeffer AJ, Lebedev S (2013) Global shear speed structure of the upper mantle and transition zone. Geophys J Int 194(1):417–449

    Article  Google Scholar 

  • Schaeffer AJ, Lebedev S, Becker TW (2016) Azimuthal seismic anisotropy in the Earth’s upper mantle and the thickness of tectonic plates. Geophys J Int 207:901–933

    Article  Google Scholar 

  • Scheck-Wenderoth M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System – new insights from a 3D structural model. Tectonophysics 397(1–2):143–165

    Article  Google Scholar 

  • Scheck-Wenderoth M, Maystrenko Y (2008) How warm are passive continental margins? A 3-D lithosphere-scale study from the Norwegian margin. Geology 36(5):419–422

    Article  Google Scholar 

  • Scheck-Wenderoth M, Maystrenko YP (2013) Deep control on shallow heat in sedimentary basins. Energy Procedia 40:226–275

    Article  Google Scholar 

  • Scheck-Wenderoth M, Maystrenko Y, Huebscher C, Hansen M, Mazur S (2008) Dynamics of salt basins. Dynamics of complex intracontinental basins; the Central European Basin System. Springer, Berlin, pp 307–322

    Google Scholar 

  • Scheck-Wenderoth M, Cacace M, Maystrenko Y, Cherubini Y, Noack V, Kaiser B, Sippel J, Lewerenz B (2014) Models of heat transport in in the Central European Basin System: effective mechanisms at different scales. Mar Pet Geol 55:315–331

    Article  Google Scholar 

  • Schotman HHA, Vermeersen LLA, Wu P, Drury MR, De Bresser JHP (2009) Constraints on shallow low-viscosity zones in Northern Europe from future GOCE gravity data. Geophys J Int 178(1):65–84

    Article  Google Scholar 

  • Sclater JG (2003) Heat flow under the oceans, plate tectonics; an insider’s history of modern theory of the Earth. Westview Press, Boulder

    Google Scholar 

  • Sclater JG, Christie PAF (1980) Continental stretching: an explanation of the post-mid-cretaceous subsidence of the central North Sea basin. J Geophys Res 85(B7):3711–3739

    Article  Google Scholar 

  • Sibuet J-C, Srivastava S, Manatschal G (2007) Exhumed mantle-forming transitional crust in the Newfoundland-Iberia rift and associated magnetic anomalies. J Geophys Res 112(B6):B06105

    Article  Google Scholar 

  • Simoes M, Braun J, Bonnet S (2010) Continental-scale erosion and transport laws: a new approach to quantitatively investigate macroscale landscapes and associated sediment fluxes over the geological past. Geochem Geophys Geosyst 11:Q09001

    Article  Google Scholar 

  • Simon K, Huismans RS, Beaumont C (2009) Dynamical modelling of lithospheric extension and small-scale convection: implications for magmatism during the formation of volcanic rifted margins. Geophys J Int 176(Suppl 1):327–350

    Article  Google Scholar 

  • Sippel J, Meeßen C, Cacace M, Mechie J, Fishwick S, Heine C, Scheck-Wenderoth M, Strecker MR (2017) The Kenya Rift revisited: insights into lithospheric strength through data-driven 3D gravity and thermal modelling. Solid Earth 8:45–81

    Article  Google Scholar 

  • Smit J, Brun JP, Cloetingh S, Ben-Avraham Z (2010) The rift-like structure and asymmetry of the Dead Sea Fault. Earth Planet Sci Lett 290(1–2):74–82

    Article  Google Scholar 

  • Steckler MS, Watts AB (1978) Subsidence history and tectonic evolution of atlantic-type continental margins. Earth Planet Sci Lett 41:1–13

    Article  Google Scholar 

  • Stein CA, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature (London) 359(6391):123–129

    Article  Google Scholar 

  • Szewczyk J, Nawrocki J (2011) Deep-seated relict permafrost in northeastern Poland. Boreas 40:385–388

    Article  Google Scholar 

  • Theissen S, Rüpke LH (2009) Feedbacks of sedimentation on crustal heat flow: new insights from the Vøring Basin, Norwegian Sea. Basin Res 22(6):976–990

    Google Scholar 

  • Thybo H, Nielsen CA (2009) Magma-compensated crustal thinning in continental rift zones. Nature 457(7231):873–876

    Article  Google Scholar 

  • Torsvik TH, Rousse S, Labails C, Smethurst MA (2009) A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys J Int 177(3):1315–1333

    Article  Google Scholar 

  • Trumbull RB, Sobolev SV, Bauer K (2002) Petrophysical modeling of high seismic velocity crust at the Namibian volcanic margin. Spec Pap Geol Soc Am 362:221–230

    Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, Cambridge, p 456

    Book  Google Scholar 

  • Vail PR, Audemard F, Bowman SA, Eisner PN, Perez-Cruz C (1991) The stratigraphic signatures of tectonics, eustasy and sedimentology – an overview. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin/Heidelberg, pp 617–659

    Google Scholar 

  • Van der Beek P (2007) Thermochronological age – elevation profiles, denudation rates and relief development. Geochim Cosmochim Acta 71(15):A1055–A1055

    Google Scholar 

  • Van Wees JD et al (2009) Probabilistic tectonic heat flow modeling for basin maturation: assessment method and applications. Mar Pet Geol 26(4):536–551

    Article  Google Scholar 

  • van Wijk JW (2005) Role of weak zone orientation in continental lithosphere extension. Geophys Res Lett 32:L02303

    Google Scholar 

  • Vauchez A, Tommasi A, Barruol G (1998) Rheological heterogeneity, mechanical anisotropy and deformation of the continental lithosphere. Tectonophysics 296:61–86

    Article  Google Scholar 

  • Vendeville BC, Jackson MPA (1992) The fall of diapirs during thin-skinned extension. Mar Pet Geol 9(4):354–371

    Article  Google Scholar 

  • Violay M, Toro GD, Nielsen S, Spagnuolo E, Burg JP (2015a) Thermo-mechanical pressurization of experimental faults in cohesive rocks during seismic slip. Earth Planet Sci Lett 429:1–10

    Article  Google Scholar 

  • Violay M, Gibert B, Mainprice D, Burg JP (2015b) Brittle versus ductile deformation as the main control of the deep fluid circulation in oceanic crust. Geophys Res Lett 42(8):2767–2773

    Article  Google Scholar 

  • Wang Q (2010) A review of water contents and ductile deformation mechanisms of olivine: implications for the lithosphere-asthenosphere boundary of continents. Lithos 120(1–2):30–41

    Article  Google Scholar 

  • Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge, p 458

    Google Scholar 

  • Weber M, DESERT Working Group (2009) Anatomy of the Dead Sea Transform from lithospheric to microscopic scale. Rev Geophys 47:RG2002. https://doi.org/10.1029/2008RG000264

    Article  Google Scholar 

  • Welte DH, Horsfield B, Baker DR (eds) (1997) Petroleum and basin evolution. Springer, Berlin, p 535

    Google Scholar 

  • Wernicke B (1981) Low-angle normal faults in the Basin and Range Province: nappe tectonics in an extending orogen. Nature 291:645–648

    Article  Google Scholar 

  • White N, Thompson M, Barwise T (2003) Understanding the thermal evolution of deep-water continental margins. Nature 426(6964):334–343

    Article  Google Scholar 

  • Wijns C, Weinberg R, Gessner K, Moresi L (2005) Mode of crustal extension determined by rheological layering. Earth Planet Sci Lett 236(1–2):120–134

    Article  Google Scholar 

  • Willenbring J, von Blanckenburg F (2010) Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465:211–214

    Article  Google Scholar 

  • Xie X, Heller PL (2009) Plate tectonics and basin subsidence history. GSA Bull 121:55–64

    Google Scholar 

  • Zhang G-B, Bott MHP (2000) Modelling the evolution of asymmetrical basins bounded by high-angle reverse faults with application to foreland basins. Tectonophysics 322:203–218

    Article  Google Scholar 

  • Zhang YS, Lay T (1996) Global surface wave phase velocity variations. J Geophys Res Solid Earth Planets 101(B4):8415–8436

    Article  Google Scholar 

  • Zuber MT, Parmentier EM, Fletcher RC (1986) Extension of continental lithosphere: a model for two scales of basin and range deformation. J Geophys Res 91(B5):4826–4838

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Scheck-Wenderoth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Scheck-Wenderoth, M. (2020). Sedimentary Basins. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_216-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_216-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics