Skip to main content

Regenerative Therapies for Acquired Axonal Neuropathies

  • Living reference work entry
  • First Online:
Peripheral Nerve Tissue Engineering and Regeneration

Abstract

Peripheral neuropathies (PN) are the most common neurodegenerative disease globally. A variety of different insults lead to PN which include diabetes, cancer chemotherapy, and infectious diseases (such as HIV, Campylobacter jejuni, and hepatitis C). The clinical signs and symptoms depend on the extent of damage to motor, sensory, and autonomic fibers as well as the pain systems. Despite this heterogeneity of etiologies, the pathogenesis of PN is confined to one of several biological mechanisms that lead to eventual axonal degeneration. These molecular mechanisms allow identification of appropriate therapeutic targets to promote regeneration and functional recovery, but so far none of these preclinical discoveries resulted in clinical success. In addition, the poor ability of regenerating axons to reach their target represents a significant challenge to the development of effective regenerative therapies. This has stimulated research into new therapeutic delivery strategies. As a result, transdermal drug delivery and gene therapy have emerged as ideal candidates to circumvent these challenges. This chapter provides an insight into how these technologies can be harnessed to maximize the benefit of regenerative therapies for acquired axonal PN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelsadek SE, El Saghier EO, Abdel Raheem SI (2018) Serum 25(OH) vitamin D level and its relation to diabetic peripheral neuropathy in Egyptian patients with type 2 diabetes mellitus. Egypt J Neurol Psychiatr Neurosurg 54(1):36–36

    Google Scholar 

  • Acharjee S, Noorbakhsh F, Stemkowski P, Olechowski C, Cohen E, Ballanyi K, Kerr B, Pardo C, Smith P, Power C (2010) HIV-1 viral protein R causes peripheral nervous system injury associated with in vivo neuropathic pain. FASEB J 24:4343–4353

    Google Scholar 

  • Adelsberger H, Quasthoff S, Grosskreutz J, Lepier A, Eckel F, Lersch C (2000) The chemotherapeutic oxaliplatin alters voltage-gated Na+ channel kinetics on rat sensory neurons. Eur J Pharmacol 406(1):25–32

    Google Scholar 

  • Allos BM (2001) Campylobacter jejuni infections: update on emerging issues and trends. Clin Infect Dis 32(8):1201–1206

    Google Scholar 

  • Anand P (2004) Neurotrophic factors and their receptors in human sensory neuropathies. Prog Brain Res 146:477–492

    Google Scholar 

  • Andersson G, Oradd G, Sultan F, Novikov LN (2018) In vivo diffusion tensor imaging, diffusion kurtosis imaging, and tractography of a sciatic nerve injury model in rat at 9.4T. Sci Rep 8(1):12911

    Google Scholar 

  • Antoniou T, Weisdorf T, Gough K (2003) Symptomatic hyperlactatemia in an HIV-positive patient: a case report and discussion. CMAJ 168(2):195–198

    Google Scholar 

  • Apfel SC (2002) Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int Rev Neurobiol 50:393–413

    Google Scholar 

  • Argyriou AA, Kyritsis AP, Makatsoris T, Kalofonos HP (2014) Chemotherapy-induced peripheral neuropathy in adults: a comprehensive update of the literature. Cancer Manag Res 6(1):135–147

    Google Scholar 

  • Arita R, Hata Y, Nakao S, Kita T, Miura M, Kawahara S, Zandi S, Almulki L, Tayyari F, Shimokawa H, Hafezi-Moghadam A, Ishibashi T (2009) Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage. Diabetes 58(1):215–226

    Google Scholar 

  • Arrieta Ó, Hernández-Pedro N, Fernández-González-Aragón MC, Saavedra-Pérez D, Campos-Parra AD, Ríos-Trejo MÁ, Cerón-Lizárraga T, Martínez-Barrera L, Pineda B, Ordóñez G, Ortiz-Plata A, Granados-Soto V, Sotelo J (2011) Retinoic acid reduces chemotherapy-induced neuropathy in an animal model and patients with lung cancer. Neurology 77(10):987–995

    Google Scholar 

  • Aslan E, Kocaeli H, Bekar A, Tolunay S, Ulus IH (2011) CDP-choline and its endogenous metabolites, cytidine and choline, promote the nerve regeneration and improve the functional recovery of injured rat sciatic nerves. Neurol Res 33(7):766–773

    Google Scholar 

  • Authier FJ, Bassez G, Payan C, Guillevin L, Pawlotsky JM, Degos JD, Gherardi RK, Belec L (2003) Detection of genomic viral RNA in nerve and muscle of patients with HCV neuropathy. Neurology 60(5):808–812

    Google Scholar 

  • Azhary H, Farooq MU, Bhanushali M, Majid A, Kassab MY (2010) Peripheral neuropathy: differential diagnosis and management. Am Fam Physician 81(7):887–892

    Google Scholar 

  • Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J (2018) Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front Pharmacol 9:423–423

    Google Scholar 

  • Banafshe HR, Hamidi GA, Noureddini M, Mirhashemi SM, Mokhtari R, Shoferpour M (2014) Effect of curcumin on diabetic peripheral neuropathic pain: possible involvement of opioid system. Eur J Pharmacol 723:202–206

    Google Scholar 

  • Bargmann CI, Horvitz HR (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7(5):729–742

    Google Scholar 

  • Barja G, Herrero A (1998) Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon. J Bioenerg Biomembr 30(3):235–243

    Google Scholar 

  • Basit A, Basit KA, Fawwad A, Shaheen F, Fatima N, Petropoulos IN, Alam U, Malik RA (2016) Vitamin D for the treatment of painful diabetic neuropathy. BMJ Open Diabetes Res Care 4(1):e000148–e000148

    Google Scholar 

  • Beijers AJ, Mols F, Vreugdenhil G (2014) A systematic review on chronic oxaliplatin-induced peripheral neuropathy and the relation with oxaliplatin administration. Support Care Cancer 22(7):1999–2007

    Google Scholar 

  • Benson HAE (2005) Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv 2(1):23–33

    Google Scholar 

  • Binda D, Cavaletti G, Cornblath DR, Merkies IS, CIPS Group (2015) Rasch-transformed total neuropathy score clinical version (RT-TNSc((c))) in patients with chemotherapy-induced peripheral neuropathy. J Peripher Nerv Syst 20(3):328–332

    Google Scholar 

  • Bodner A, Toth PT, Miller RJ (2004) Activation of c-Jun N-terminal kinase mediates gp120IIIB- and nucleoside analogue-induced sensory neuron toxicity. Exp Neurol 188(2):246–253

    Google Scholar 

  • Bota O, Fodor L (2019) The influence of drugs on peripheral nerve regeneration. Drug Metab Rev 51(3):266–292

    Google Scholar 

  • Boubaker K, Flepp M, Sudre P, Furrer H, Haensel A, Hirschel B, Boggian K, Chave JP, Bernasconi E, Egger M, Opravil M, Rickenbach M, Francioli P, Telenti A (2001) Hyperlactatemia and antiretroviral therapy: the Swiss HIV Cohort Study. Clin Infect Dis 33(11):1931–1937

    Google Scholar 

  • Brown TJ, Pittman AL, Monaco GN, Benscoter BJ, Mantravadi AV, Akst LM, Jones KJ, Foecking EM (2013) Androgen treatment and recovery of function following recurrent laryngeal nerve injury in the rat. Restor Neurol Neurosci 31(2):169–176

    Google Scholar 

  • Brownlee M, Pongor S, Cerami A (1983) Covalent attachment of soluble proteins by nonenzymatically glycosylated collagen. Role in the in situ formation of immune complexes. J Exp Med 158(5):1739–1744

    Google Scholar 

  • Cacoub P, Renou C, Rosenthal E, Cohen P, Loury I, Loustaud-Ratti V, Yamamoto AM, Camproux AC, Hausfater P, Musset L, Veyssier P, Raguin G, Piette JC, Amoura Z, Boissonnas A, Cacoub P, Camproux AC, Carrat F, Chapelon-Abric C, Chemlal K, Cosserat J, De Gennes C, Francès C, Ginsburg C, Godeau P, Hausfater P, Karmochkine M, Le Moing V, Musset L, Papo T, Piette JC, Poinsignon Y, Raguin G, Simon J, Wechsler B, Yamamoto AM, Ziza JM, Bernard N, Lacoste D, Loury I, Morlat P, Bouchard O, Micoud M, Chambourlier P, Renou C, Cohen P, Guillevin L, De Korwin JD, Wahl D, Devars Du Mayne JF, Dupont C, Hanslik T, Durand JM, Kaplanski G, Fior R, Galanaud R, Geffray L, Veyssier P, Goujard C, Hayek R, Laurichesse H, Le Lostec Z, Lunel-Fabiani F, Loustaud-Ratti V, Ouzan D, Perronne C, Raabe JJ, Wang A, Rosenthal E (2000) Extrahepatic manifestations associated with hepatitis C virus infection: a prospective multicenter study of 321 patients. Medicine 79(1):47–56

    Google Scholar 

  • Calcutt NA, Jolivalt CG, Fernyhough P (2008) Growth factors as therapeutics for diabetic neuropathy. Curr Drug Targets 9(1):47–59

    Google Scholar 

  • Cashman CR, Höke A (2015) Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett 596:33–50

    Google Scholar 

  • Caudy M, Bentley D (1986) Pioneer growth cone steering along a series of neuronal and non-neuronal cues of different affinities. J Neurosci 6(6):1781–1795

    Google Scholar 

  • Cavaletti G (2014) Chemotherapy-induced peripheral neurotoxicity (CIPN): what we need and what we know. J Peripher Nerv Syst 19(2):66–76

    Google Scholar 

  • Chabas J-F, Alluin O, Rao G, Garcia S, Lavaut M-N, Risso JJ, Legre R, Magalon G, Khrestchatisky M, Marqueste T (2008) Vitamin D2 potentiates axon regeneration. J Neurotrauma 25(10):1247–1256

    Google Scholar 

  • Chabas J-F, Stephan D, Marqueste T, Garcia S, Lavaut M-N, Nguyen C, Legre R, Khrestchatisky M, Decherchi P, Feron F (2013) Cholecalciferol (vitamin D3) improves myelination and recovery after nerve injury. PLoS One 8(5):e65034

    Google Scholar 

  • Chan KM, Gordon T, Zochodne DW, Power HA (2014) Improving peripheral nerve regeneration: from molecular mechanisms to potential therapeutic targets. Exp Neurol 261:826–835

    Google Scholar 

  • Chattopadhyay M, Goss J, Lacomis D, Goins WC, Glorioso JC, Mata M, Fink DJ (2003) Protective effect of HSV-mediated gene transfer of nerve growth factor in pyridoxine neuropathy demonstrates functional activity of trkA receptors in large sensory neurons of adult animals. Eur J Neurosci 17(4):732–740

    Google Scholar 

  • Chattopadhyay M, Goss J, Wolfe D, Goins WC, Huang S, Glorioso JC, Mata M, Fink DJ (2004) Protective effect of herpes simplex virus-mediated neurotrophin gene transfer in cisplatin neuropathy. Brain 127.(Pt 4:929–939

    Google Scholar 

  • Chattopadhyay M, Mata M, Goss J, Wolfe D, Huang S, Glorioso JC, Fink DJ (2007) Prolonged preservation of nerve function in diabetic neuropathy in mice by herpes simplex virus-mediated gene transfer. Diabetologia 50(7):1550–1558

    Google Scholar 

  • Chattopadhyay M, Walter C, Mata M, Fink DJ (2009) Neuroprotective effect of herpes simplex virus-mediated gene transfer of erythropoietin in hyperglycemic dorsal root ganglion neurons. Brain 132(Pt 4):879–888

    Google Scholar 

  • Chaunu MP, Ratinahirana H, Raphael M, Hénin D, Leport C, Brun-Vezinet F, Léger JM, Brunet P, Hauw JJ (1989) The spectrum of changes on 20 nerve biopsies in patients with HIV infection. Muscle Nerve 12(6):452–459

    Google Scholar 

  • Cheng Y, Liu J, Luan Y, Liu Z, Lai H, Zhong W, Yang Y, Yu H, Feng N, Wang H, Huang R, He Z, Yan M, Zhang F, Sun YG, Ying H, Guo F, Zhai Q (2019) Sarm1 gene deficiency attenuates diabetic peripheral neuropathy in mice. Diabetes 68(11):2120–2130

    Google Scholar 

  • Clements RS Jr, Bell DS (1982) Diagnostic, pathogenetic, and therapeutic aspects of diabetic neuropathy. Spec Top Endocrinol Metab 3:1–43

    Google Scholar 

  • Cohen S, Levi-Montalcini R, Hamburger V (1954) A nerve growth-stimulating factor isolated from sarcomas 37 and 180. Proc Natl Acad Sci U S A 40(10):1014–1018

    Google Scholar 

  • Coleman MP, Freeman MR (2010) Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci 33:245–267

    Google Scholar 

  • Cornblath DR, McArthur JC (1988) Predominantly sensory neuropathy in patients with AIDS and AIDS-related complex. Neurology 38(5):794–796

    Google Scholar 

  • Cornblath DR, Chaudhry V, Carter K, Lee D, Seysedadr M, Miernicki M, Joh T (1999) Total neuropathy score: validation and reliability study. Neurology 53(8):1660–1664

    Google Scholar 

  • de La Monte SM, Gabuzda DH, Ho DD, Brown RH Jr, Hedley-Whyte ET, Schooley RT, Hirsch MS, Bhan AK (1988) Peripheral neuropathy in the acquired immunodeficiency syndrome. Ann Neurol 23(5):485–492

    Google Scholar 

  • Deckwerth TL, Johnson EM Jr (1994) Neurites can remain viable after destruction of the neuronal soma by programmed cell death (apoptosis). Dev Biol 165(1):63–72

    Google Scholar 

  • Di Stefano G, Di Lionardo A, Galosi E, Truini A, Cruccu G (2019) Acetyl-L-carnitine in painful peripheral neuropathy: a systematic review. J Pain Res 12:1341–1351

    Google Scholar 

  • Dickerman RD, Kramer E, Pertusi R, McConathy WJ (1997) Peripheral neuropathy and testosterone. Neurotoxicology 18(2):587–588

    Google Scholar 

  • Ding Z, Cao J, Shen Y, Zou Y, Yang X, Zhou W, Guo Q, Huang C (2018) Resveratrol promotes nerve regeneration via activation of p300 acetyltransferase-mediated VEGF signaling in a rat model of sciatic nerve crush injury. Front Neurosci 12:341

    Google Scholar 

  • Donertas B, Unel CC, Erol K (2018) Cannabinoids and agmatine as potential therapeutic alternatives for cisplatin-induced peripheral neuropathy. J Exp Pharmacol 10:19–28

    Google Scholar 

  • Du Z-j, Wang L, Lei D-l, Liu B-l, Cao J, Zhang P, Ma Q, Surgery M (2011) Nerve growth factor injected systemically improves the recovery of the inferior alveolar nerve in a rabbit model of mandibular distraction osteogenesis. Br J Oral Maxillofac Surg 49(7):557–561

    Google Scholar 

  • Duran-Jimenez B, Dobler D, Moffatt S, Rabbani N, Streuli CH, Thornalley PJ, Tomlinson DR, Gardiner NJ (2009) Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes 58(12):2893–2903

    Google Scholar 

  • Dyck PJ, Kratz KM, Karnes JL, Litchy WJ, Klein R, Pach JM, Wilson DM, O'Brien PC, Melton LJ III (1993) The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester diabetic neuropathy study. Neurology 43(4):817–824

    Google Scholar 

  • Ebadi M, Bashir RM, Heidrick ML, Hamada FM, Refaey HEL, Hamed A, Helal G, Baxi MD, Cerutis DR, Lassi NK (1997) Neurotrophins and their receptors in nerve injury and repair. Neurochem Int 30(4-5):347–374

    Google Scholar 

  • El-Fatatry BM, Ibrahim OM, Hussien FZ, Mostafa TM (2018) Role of metformin in oxaliplatin-induced peripheral neuropathy in patients with stage III colorectal cancer: randomized, controlled study. Int J Color Dis 33(12):1675–1683

    Google Scholar 

  • Erbas O, Taskiran D, Oltulu F, Yavasoglu A, Bora S, Bilge O, Cinar BP, Peker G (2017) Oxytocin provides protection against diabetic polyneuropathy in rats. Neurol Res 39(1):45–53

    Google Scholar 

  • Escobar-Jimenez F (2002) Efficacy and safety of sildenafil in men with type 2 diabetes mellitus and erectile dysfunction. Med Clin (Barc) 119(4):121–124

    Google Scholar 

  • Esteghamati A, Eskandari D, Mirmiranpour H, Noshad S, Mousavizadeh M, Hedayati M, Nakhjavani M (2013) Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: a randomized clinical trial. Clin Nutr 32(2):179–185

    Google Scholar 

  • Fairbanks CA, Schreiber KL, Brewer KL, Yu CG, Stone LS, Kitto KF, Nguyen HO, Grocholski BM, Shoeman DW, Kehl LJ, Regunathan S, Reis DJ, Yezierski RP, Wilcox GL (2000) Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury. Proc Natl Acad Sci U S A 97(19):10584–10589

    Google Scholar 

  • Fang JY, Lee WR, Shen SC, Fang YP, Hu CH (2004) Enhancement of topical 5-aminolaevulinic acid delivery by erbium:YAG laser and microdermabrasion: a comparison with iontophoresis and electroporation. Br J Dermatol 151(1):132–140

    Google Scholar 

  • Fang T, Shao Y, Oswald T, Lineaweaver WC, Zhang F (2013) Effect of sildenafil on peripheral nerve regeneration. Ann Plast Surg 70(1):62–65

    Google Scholar 

  • Fernando GJ, Chen X, Prow TW, Crichton ML, Fairmaid EJ, Roberts MS, Frazer IH, Brown LE, Kendall MA (2010) Potent immunity to low doses of influenza vaccine by probabilistic guided micro-targeted skin delivery in a mouse model. PLoS One 5(4):e10266

    Google Scholar 

  • Ferri C, Zignego AL, Pileri SA (2002) Cryoglobulins. J Clin Pathol 55(1):4–13

    Google Scholar 

  • Ferrier J, Pereira V, Busserolles J, Authier N, Balayssac D (2013) Emerging trends in understanding chemotherapy-induced peripheral neuropathy. Curr Pain Headache Rep 17(10):364

    Google Scholar 

  • Finn JT, Weil M, Archer F, Siman R, Srinivasan A, Raff MC (2000) Evidence that wallerian degeneration arid localized axon degeneration induced by local neurotrophin deprivation do not involve caspases. J Neurosci 20(4):1333–1341

    Google Scholar 

  • Fujimoto S, Amako K (1990) Guillain-Barré syndrome and campylobacter jejuni infection. Lancet 335(8701):1350

    Google Scholar 

  • Fujimoto T, Shirakami K, Tojo K (2005) Effect of microdermabrasion on barrier capacity of stratum corneum. Chem Pharm Bull 53(8):1014–1016

    Google Scholar 

  • Gabbay KH, Merola LO, Field RA (1966) Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science 151(3707):209–210

    Google Scholar 

  • Gao WQ, Shinsky N, Ingle G, Beck K, Elias KA, Powell-Braxton L (1999) IGF-I deficient mice show reduced peripheral nerve conduction velocities and decreased axonal diameters and respond to exogenous IGF-I treatment. J Neurobiol 39(1):142–152

    Google Scholar 

  • Geisler S, Doan RA, Strickland A, Huang X, Milbrandt J, DiAntonio A (2016) Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 139(Pt 12):3092–3108

    Google Scholar 

  • Geisler S, Doan RA, Cheng GC, Cetinkaya-Fisgin A, Huang SX, Hoke A, Milbrandt J, DiAntonio A (2019) Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program. JCI Insight 4(17):e129920

    Google Scholar 

  • Gerdts J, Summers DW, Sasaki Y, DiAntonio A, Milbrandt J (2013) Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J Neurosci 33(33):13569–13580

    Google Scholar 

  • Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J (2015) SARM1 activation triggers axon degeneration locally via NAD(+) destruction. Science 348(6233):453–457

    Google Scholar 

  • Glass JD, Brushart TM, George EB, Griffin JW (1993) Prolonged survival of transected nerve fibres in C57BL/Ola mice is an intrinsic characteristic of the axon. J Neurocytol 22(5):311–321

    Google Scholar 

  • Glorioso JC, Fink DJ (2004) Herpes vector-mediated gene transfer in treatment of diseases of the nervous system. Annu Rev Microbiol 58:253–271

    Google Scholar 

  • Gong Y, Gong L, Gu X, Ding F (2009) Chitooligosaccharides promote peripheral nerve regeneration in a rabbit common peroneal nerve crush injury model. Microsurgery 29(8):650–656

    Google Scholar 

  • Gornstein E, Schwarz TL (2014) The paradox of paclitaxel neurotoxicity: mechanisms and unanswered questions. Neuropharmacology 76(Pt A):175–183

    Google Scholar 

  • Goss JR, Goins WF, Lacomis D, Mata M, Glorioso JC, Fink DJ (2002) Herpes simplex-mediated gene transfer of nerve growth factor protects against peripheral neuropathy in streptozotocin-induced diabetes in the mouse. Diabetes 51(7):2227–2232

    Google Scholar 

  • Guillain G (1916) Sur un syndrome de radiculo-nevrite avec hyperalbuminose du liquode cephalo-rachidien sans reaction cellulaire: remarques sur les caracteres cliniques et graphiques des reflexes tendineux. Bull Soc Med Hop Paris 40:1462–1470

    Google Scholar 

  • Gümüs B, Kuyucu E, Erbas O, Kazimoglu C, Oltulu F, Bora OA (2015) Effect of oxytocin administration on nerve recovery in the rat sciatic nerve damage model. J Orthop Surg Res 10:161–161

    Google Scholar 

  • Guo HL, Yang Y, Geng ZP, Zhu LX, Yuan SY, Zhao Y, Gao YH, Fu HJ (1999) The change of insulin-like growth factor-1 in diabetic patients with neuropathy. Chin Med J 112(1):76–79

    Google Scholar 

  • Gupta M, Singh J, Sood S, Arora B (2003) Mechanism of antinociceptive effect of nimodipine in experimental diabetic neuropathic pain. Methods Find Exp Clin Pharmacol 25(1):49–52

    Google Scholar 

  • Hahn K, Triolo A, Hauer P, McArthur JC, Polydefkis M (2007) Impaired reinnervation in HIV infection following experimental denervation. Neurology 68(16):1251–1256

    Google Scholar 

  • Hahn K, Robinson B, Anderson C, Li W, Pardo CA, Morgello S, Simpson D, Nath A (2008) Differential effects of HIV infected macrophages on dorsal root ganglia neurons and axons. Exp Neurol 210(1):30–40

    Google Scholar 

  • Han Y, Smith MT (2013) Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN). Front Pharmacol 4:156

    Google Scholar 

  • Hanaoka Y, Ohi T, Furukawa S, Furukawa Y, Hayashi K, Matsukura S (1994) The therapeutic effects of 4-methylcatechol, a stimulator of endogenous nerve growth factor synthesis, on experimental diabetic neuropathy in rats. J Neurol Sci 122(1):28–32

    Google Scholar 

  • Hao S, Mata M, Glorioso JC, Fink DJ (2006) HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain. Mol Pain 2:6–6

    Google Scholar 

  • Hernández-Pedro N, Ordóñez G, Ortiz-Plata A, Palencia-Hernández G, García-Ulloa AC, Flores-Estrada D, Sotelo J, Arrieta OJTR (2008) All-trans retinoic acid induces nerve regeneration and increases serum and nerve contents of neural growth factor in experimental diabetic neuropathy. Transl Res 152(1):31–37

    Google Scholar 

  • Hershman DL, Unger JM, Crew KD, Minasian LM, Awad D, Moinpour CM, Hansen L, Lew DL, Greenlee H, Fehrenbacher L (2013) Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for the prevention of taxane-induced neuropathy in women undergoing adjuvant breast cancer therapy. J Clin Oncol 31(20):2627

    Google Scholar 

  • Himeno T, Kamiya H, Naruse K, Harada N, Ozaki N, Seino Y, Shibata T, Kondo M, Kato J, Okawa T, Fukami A, Hamada Y, Inagaki N, Seino Y, Drucker DJ, Oiso Y, Nakamura J (2011) Beneficial effects of exendin-4 on experimental polyneuropathy in diabetic mice. Diabetes 60(9):2397–2406

    Google Scholar 

  • Höke A, Morris M, Haughey NJ (2009) GPI-1046 protects dorsal root ganglia from gp120-induced axonal injury by modulating store-operated calcium entry. JPNS 14(1):27–35

    Google Scholar 

  • Hou YW, Chan MH, Hsu HR, Liu BR, Chen CP, Chen HH, Lee HJ (2007) Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides. Exp Dermatol 16(12):999–1006

    Google Scholar 

  • Hsieh YL, Chiang H, Tseng TJ, Hsieh ST (2008) Enhancement of cutaneous nerve regeneration by 4-methylcatechol in resiniferatoxin-induced neuropathy. J Neuropathol Exp Neurol 67(2):93–104

    Google Scholar 

  • Hsieh Y-L, Lin W-M, Lue J-H, Chang M-F, Hsieh S-T (2009) Effects of 4-methylcatechol on skin reinnervation: promotion of cutaneous nerve regeneration after crush injury. J Neuropathol Exp Neurol 68(12):1269–1281

    Google Scholar 

  • Huo DS, Zhang M, Cai ZP, Dong CX, Wang H, Yang ZJ (2015) The role of nerve growth factor in ginsenoside Rg1-induced regeneration of injured rat sciatic nerve. J Toxicol Environ Health A 78(21-22):1328–1337

    Google Scholar 

  • Hur E-M, Saijilafu, Zhou F-Q (2012) Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration. Trends Neurosci 35(3):164–174

    Google Scholar 

  • IDF (2014) International Diabetes Federation Diabetes Atlas, vol 4. IDF, Brussels

    Google Scholar 

  • Ilyas AA, Chen Z-W (2007) Lewis rats immunized with GM1 ganglioside do not develop peripheral neuropathy. J Neuroimmunol 188(1-2):34–38

    Google Scholar 

  • Jang CH, Cho YB, Choi CH (2012) Effect of Ginkgo biloba extract on recovery after facial nerve crush injury in the rat. Int J Pediatr Otorhinolaryngol 76(12):1823–1826

    Google Scholar 

  • Jayabalan B, Low LL (2016) Vitamin B supplementation for diabetic peripheral neuropathy. Singap Med J 57(2):55–59

    Google Scholar 

  • Jennum P, Ibsen R, Kjellberg J (2015) Health, social and economic consequences of polyneuropathy: a controlled national study evaluating societal effects on patients and their partners. Eur Neurol 73(1-2):81–88

    Google Scholar 

  • Jiang M, Zhuge X, Yang Y, Gu X, Ding F (2009) The promotion of peripheral nerve regeneration by chitooligosaccharides in the rat nerve crush injury model. Neurosci Lett 454(3):239–243

    Google Scholar 

  • Jin PP, Li FF, Ruan RQ, Zhang L, Man N, Hu Y, Zhou W, Wen LP (2014) Enhanced transdermal delivery of epidermal growth factor facilitated by dual peptide chaperone motifs. Protein Pept Lett 21(6):550–555

    Google Scholar 

  • Joint United Nations Programme on HIV/AIDS (2010) Global report: UNAIDS report on the global AIDS epidemic. UNAIDS, Geneva

    Google Scholar 

  • Jones G, Zhu Y, Silva C, Tsutsui S, Pardo CA, Keppler OT, McArthur JC, Power C (2005) Peripheral nerve-derived HIV-1 is predominantly CCR5-dependent and causes neuronal degeneration and neuroinflammation. Virology 334(2):178–193

    Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413(6852):203–210

    Google Scholar 

  • Kamei J, Ohsawa M, Miyata S, Endo K, Hayakawa H (2008) Effects of cytidine 5′-diphosphocholine (CDP-choline) on the thermal nociceptive threshold in streptozotocin-induced diabetic mice. Eur J Pharmacol 598(1-3):32–36

    Google Scholar 

  • Kamerman PR, Moss PJ, Weber J, Wallace VCJ, Rice ASC, Huang W (2012) Pathogenesis of HIV-associated sensory neuropathy: evidence from in vivo and in vitro experimental models. J Peripher Nerv Syst 17(1):19–31

    Google Scholar 

  • Kan M, Guo G, Singh B, Singh V, Zochodne DW (2012) Glucagon-like peptide 1, insulin, sensory neurons, and diabetic neuropathy. J Neuropathol Exp Neurol 71(6):494–510

    Google Scholar 

  • Karadeniz F, Artan M, Kong C-S, Kim S-K (2010) Chitooligosaccharides protect pancreatic β-cells from hydrogen peroxide-induced deterioration. Carbohydr Polym 82(1):143–147

    Google Scholar 

  • Karande P, Jain A, Mitragotri S (2004) Discovery of transdermal penetration enhancers by high-throughput screening. Nat Biotechnol 22(2):192–197

    Google Scholar 

  • Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E (2012) Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx 39(2):145–150

    Google Scholar 

  • Keilbaugh SA, Hobbs GA, Simpson MV (1997) Effect of 2′,3′-dideoxycytidine on oxidative phosphorylation in the PC 12 cell, a neuronal model. Biochem Pharmacol 53(10):1485–1492

    Google Scholar 

  • Keswani SC, Pardo CA, Cherry CL, Hoke A, McArthur JC (2002) HIV-associated sensory neuropathies. AIDS 16(16):2105–2117

    Google Scholar 

  • Ketschek A, Jones S, Spillane M, Korobova F, Svitkina T, Gallo G (2015) Nerve growth factor promotes reorganization of the axonal microtubule array at sites of axon collateral branching. Dev Neurobiol 75(12):1441–1461

    Google Scholar 

  • Kidd JF, Pilkington MF, Schell MJ, Fogarty KE, Skepper JN, Taylor CW, Thorn P (2002) Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J Biol Chem 277(8):6504–6510

    Google Scholar 

  • Kosacka J, Nowicki M, Kloting N, Kern M, Stumvoll M, Bechmann I, Serke H, Bluher M (2012) COMP-angiopoietin-1 recovers molecular biomarkers of neuropathy and improves vascularisation in sciatic nerve of ob/ob mice. PLoS One 7(3):e32881

    Google Scholar 

  • Lance J, McCabe S, Clancy RL, Pierce J (2012) Coenzyme Q10 – a therapeutic agent. Medsurg Nurs 21(6):367–371

    Google Scholar 

  • Landowski LM, Dyck PJB, Engelstad J, Taylor BV (2016) Axonopathy in peripheral neuropathies: mechanisms and therapeutic approaches for regeneration. J Chem Neuroanat 76:19–27

    Google Scholar 

  • Lankford K, Arroyo E, Liu C-N, Somps C, Zorbas M, Shelton D, Evans M, Hurst S, Kocsis J (2013) Sciatic nerve regeneration is not inhibited by anti-NGF antibody treatment in the adult rat. Neuroscience 241:157–169

    Google Scholar 

  • Lau D, Harte SE, Morrow TJ, Wang S, Mata M, Fink DJ (2012) Herpes simplex virus vector-mediated expression of interleukin-10 reduces below-level central neuropathic pain after spinal cord injury. Neurorehabil Neural Repair 26(7):889–897

    Google Scholar 

  • Lauria G, Devigili G (2007) Skin biopsy as a diagnostic tool in peripheral neuropathy. Nat Clin Pract Neurol 3(10):546–557

    Google Scholar 

  • Lavanchy D (2011) Evolving epidemiology of hepatitis C virus. Clin Microbiol Infect 17(2):107–115

    Google Scholar 

  • Lee BJ, Huang YC, Chen SJ, Lin PT (2012) Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition 28(3):250–255

    Google Scholar 

  • Lee KA, Park KT, Yu HM, Jin HY, Baek HS, Park TS (2013) Effect of granulocyte colony-stimulating factor on the peripheral nerves in streptozotocin-induced diabetic rat. Diabetes Metab J 37(4):286–290

    Google Scholar 

  • Lee B-J, Lin J-S, Lin Y-C, Lin P-T (2014) Effects of L-carnitine supplementation on oxidative stress and antioxidant enzymes activities in patients with coronary artery disease: a randomized, placebo-controlled trial. Nutr J 13:79–79

    Google Scholar 

  • Léger J-M, Guimarães-Costa R, Muntean C (2016) Immunotherapy in peripheral neuropathies. Neurotherapeutics 13(1):96–107

    Google Scholar 

  • Lehmann HC, Zhang J, Mori S, Sheikh KA (2010) Diffusion tensor imaging to assess axonal regeneration in peripheral nerves. Exp Neurol 223(1):238–244

    Google Scholar 

  • Leinninger GM, Vincent AM, Feldman EL (2004) The role of growth factors in diabetic peripheral neuropathy. J Peripher Nerv Syst 9(1):26–53

    Google Scholar 

  • Lema MJ, Foley KM, Hausheer FH (2010) Types and epidemiology of cancer-related neuropathic pain: the intersection of cancer pain and neuropathic pain. Oncologist 15(Suppl 2):3–8

    Google Scholar 

  • Liu B, Liu W-S, Han B-Q, Sun Y-Y (2007) Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World J Gastroenterol 13(5):725–731

    Google Scholar 

  • Liu H-T, Huang Y-C, Cheng S-B, Huang Y-T, Lin P-T (2016) Effects of coenzyme Q10 supplementation on antioxidant capacity and inflammation in hepatocellular carcinoma patients after surgery: a randomized, placebo-controlled trial. Nutr J 15(1):85–85

    Google Scholar 

  • Lubec D, Müllbacher W, Finsterer J, Mamoli B (1999) Diagnostic work-up in peripheral neuropathy: an analysis of 171 cases. Postgrad Med J 75(890):723–727

    Google Scholar 

  • Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S (1989) Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur J Neurosci 1(1):27–33

    Google Scholar 

  • Luria S, Cohen A, Safran O, Firman S, Liebergall M (2013) Immune system augmentation by glatiramer acetate of peripheral nerve regeneration–crush versus transection models of rat sciatic nerve. J Reconstr Microsurg 29(08):495–500

    Google Scholar 

  • Lv J, Cao L, Zhang R, Bai F, Wei P (2018) A curcumin derivative J147 ameliorates diabetic peripheral neuropathy in streptozotocin (STZ)-induced DPN rat models through negative regulation AMPK on TRPA1. Acta Cir Bras 33(6):533–541

    Google Scholar 

  • Ma J, Liu J, Yu H, Wang Q, Chen Y, Xiang L (2013) Curcumin promotes nerve regeneration and functional recovery in rat model of nerve crush injury. Neurosci Lett 547:26–31

    Google Scholar 

  • Ma J, Liu J, Yu H, Chen Y, Wang Q, Xiang L (2016a) Beneficial effect of metformin on nerve regeneration and functional recovery after sciatic nerve crush injury in diabetic rats. Neruochem Res 41(5):1130–1137

    Google Scholar 

  • Ma J, Yu H, Liu J, Chen Y, Wang Q, Xiang L (2016b) Curcumin promotes nerve regeneration and functional recovery after sciatic nerve crush injury in diabetic rats. Neurosci Lett 610:139–143

    Google Scholar 

  • Mack TG, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, Thomson D, Gillingwater T, Court F, Conforti L, Fernando FS, Tarlton A, Andressen C, Addicks K, Magni G, Ribchester RR, Perry VH, Coleman MP (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci 4(12):1199–1206

    Google Scholar 

  • Madura T, Kubo T, Tanag M, Matsuda K, Tomita K, Yano K, Hosokawa K (2007) The Rho-associated kinase inhibitor fasudil hydrochloride enhances neural regeneration after axotomy in the peripheral nervous system. Plast Reconstr Surg 119(2):526–535

    Google Scholar 

  • Mallik S, Kallis C, Lunn MPT, Smith AG (2017) Gangliosides for the treatment of diabetic peripheral neuropathy. Cochrane Database Syst Rev 2017(6):CD011028

    Google Scholar 

  • Martyn CN, Hughes RA (1997) Epidemiology of peripheral neuropathy. J Neurol Neurosurg Psychiatry 62(4):310–318

    Google Scholar 

  • Maser RE, Lenhard MJ, Pohlig RT (2015) Vitamin D insufficiency is associated with reduced parasympathetic nerve Fiber function in type 2 diabetes. Endocr Pract 21(2):174–181

    Google Scholar 

  • Matoba K, Kawanami D, Okada R, Tsukamoto M, Kinoshita J, Ito T, Ishizawa S, Kanazawa Y, Yokota T, Murai N, Matsufuji S, Takahashi-Fujigasaki J, Utsunomiya K (2013) Rho-kinase inhibition prevents the progression of diabetic nephropathy by downregulating hypoxia-inducible factor 1alpha. Kidney Int 84(3):545–554

    Google Scholar 

  • McArthur JC, Brew BJ, Nath A (2005) Neurological complications of HIV infection. Lancet Neurol 4(9):543–555

    Google Scholar 

  • McDonald ES, Randon KR, Knight A, Windebank AJ (2005) Cisplatin preferentially binds to DNA in dorsal root ganglion neurons in vitro and in vivo: a potential mechanism for neurotoxicity. Neurobiol Dis 18(2):305–313

    Google Scholar 

  • Medori R, Autilio-Gambetti L, Monaco S, Gambetti P (1985) Experimental diabetic neuropathy: impairment of slow transport with changes in axon cross-sectional area. Proc Natl Acad Sci U S A 82(22):7716–7720

    Google Scholar 

  • Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125

    Google Scholar 

  • Merkies IS, Lauria G, Faber CG (2012) Outcome measures in peripheral neuropathies: requirements through statements. Curr Opin Neurol 25(5):556–563

    Google Scholar 

  • Merkies IS, Faber CG, Lauria G (2015) Advances in diagnostics and outcome measures in peripheral neuropathies. Neurosci Lett 596:3–13

    Google Scholar 

  • Migdalis IN, Kalantzis L, Samartzis M, Kalogeropoulou K, Nounopoulos C, Bouloukos A (1995) Insulin-like growth factor-I and IGF-I receptors in diabetic patients with neuropathy. Diabet Med 12(9):823–827

    Google Scholar 

  • Mironov S, Ivannikov M, Johansson M (2005) [Ca2+](i) signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules - from mitochondrial permeability transition pore to Ca2+-induced Ca2+ release. J Biol Chem 280:715–721

    Google Scholar 

  • Mullokandov EA, Franklin WA, Brownlee M (1994) DNA damage by the glycation products of glyceraldehyde 3-phosphate and lysine. Diabetologia 37(2):145–149

    Google Scholar 

  • Nahleh Z, Pruemer J, Lafollette J, Sweany S (2010) Melatonin, a promising role in taxane-related neuropathy. Clin Med Insights Oncol 4:35–41

    Google Scholar 

  • Naudi A, Jove M, Ayala V, Cassanye A, Serrano J, Gonzalo H, Boada J, Prat J, Portero-Otin M, Pamplona R (2012) Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diabetes Res 2012:696215

    Google Scholar 

  • Navia BA, Dafni U, Simpson D, Tucker T, Singer E, McArthur JC, Yiannoutsos C, Zaborski L, Lipton SA (1998) A phase I/II trial of nimodipine for HIV-related neurologic complications. Neurology 51(1):221–228

    Google Scholar 

  • Nemni R, Sanvito L, Quattrini A, Santuccio G, Camerlingo M, Canal N (2003) Peripheral neuropathy in hepatitis C virus infection with and without cryoglobulinaemia. J Neurol Neurosurg Psychiatry 74(9):1267–1271

    Google Scholar 

  • Newlands ES (1978) The current role of cancer chemotherapy. Br J Radiol 51(610):756–770

    Google Scholar 

  • Okada K, Tanaka H, Temporin K, Okamoto M, Kuroda Y, Moritomo H, Murase T, Yoshikawa H (2010) Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp Neurol 222(2):191–203

    Google Scholar 

  • Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH, Sheehan AE, Avery MA, Hackett R, Logan MA, MacDonald JM, Ziegenfuss JS, Milde S, Hou YJ, Nathan C, Ding A, Brown RH Jr, Conforti L, Coleman M, Tessier-Lavigne M, Zuchner S, Freeman MR (2012) dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337(6093):481–484

    Google Scholar 

  • Osuntokun BO (1986) Epidemiology of peripheral neuropathies. In: Neurology. Springer, Berlin/Heidelberg

    Google Scholar 

  • Ozturk E, Arslan AKK, Yerer MB, Bishayee A (2017) Resveratrol and diabetes: a critical review of clinical studies. Biomed Pharmacother 95:230–234

    Google Scholar 

  • Palencia G, Hernández-Pedro N, Saavedra-Perez D, Peña-Curiel O, Ortiz-Plata A, Ordoñez G, Flores-Estrada D, Sotelo J, Arrieta O (2014) Retinoic acid reduces solvent-induced neuropathy and promotes neural regeneration in mice. J Neurosci Res 92(8):1062–1070

    Google Scholar 

  • Palumbo PJ, Elveback LR, Whisnant JP (1978) Neurologic complications of diabetes mellitus: transient ischemic attack, stroke, and peripheral neuropathy. Adv Neurol 19:593–601

    Google Scholar 

  • Pan H-C, Wu H-T, Cheng F-C, Chen C-H, Sheu M-L, Chen C-J (2009) Potentiation of angiogenesis and regeneration by G-CSF after sciatic nerve crush injury. Biochem Biophys Res Commun 382(1):177–182

    Google Scholar 

  • Pan HC, Sheu ML, Su HL, Chen YJ, Chen CJ, Yang DY, Chiu WT, Cheng FC (2011) Magnesium supplement promotes sciatic nerve regeneration and down-regulates inflammatory response. Magnes Res 24(2):54–70

    Google Scholar 

  • Polydefkis M, Hauer P, Sheth S, Sirdofsky M, Griffin JW, McArthur JC (2004) The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain 127(Pt 7):1606–1615

    Google Scholar 

  • Polydefkis M, Sirdofsky M, Hauer P, Petty BG, Murinson B, McArthur JC (2006) Factors influencing nerve regeneration in a trial of timcodar dimesylate. Neurology 66(2):259–261

    Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268

    Google Scholar 

  • Prow TW, Chen X, Prow NA, Fernando GJP, Tan CSE, Raphael AP, Chang D, Ruutu MP, Jenkins DWK, Pyke A, Crichton ML, Raphaelli K, Goh LYH, Frazer IH, Roberts MS, Gardner J, Khromykh AA, Suhrbier A, Hall RA, Kendall MAF (2010) Nanopatch-targeted skin vaccination against West Nile virus and chikungunya virus in mice. Small 6(16):1776–1784

    Google Scholar 

  • Pyriochou A, Zhou Z, Koika V, Petrou C, Cordopatis P, Sessa WC, Papapetropoulos A (2007) The phosphodiesterase 5 inhibitor sildenafil stimulates angiogenesis through a protein kinase G/MAPK pathway. J Cell Physiol 211(1):197–204

    Google Scholar 

  • Rajan B, Polydefkis M, Hauer P, Griffin JW, McArthur JC (2003) Epidermal reinnervation after intracutaneous axotomy in man. J Comp Neurol 457(1):24–36

    Google Scholar 

  • Rauskolb S, Dombert B, Sendtner M (2017) Insulin-like growth factor 1 in diabetic neuropathy and amyotrophic lateral sclerosis. Neurobiol Dis 97:103–113

    Google Scholar 

  • Ribeiro CM, Vasconcelos BC, Silva Neto JC, Silva Junior VA, Figueiredo NG (2008) Histopathological analysis of gangliosides use in peripheral nerve regeneration after axonotmesis in rats. Acta Cir Bras 23(4):364–371

    Google Scholar 

  • Rotshenker S (2011) Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 8:109–109

    Google Scholar 

  • Sahenk Z, Barohn R, New P, Mendell JR (1994) Taxol neuropathy. Electrodiagnostic and sural nerve biopsy findings. Arch Neurol 51(7):726–729

    Google Scholar 

  • Santoro L, Manganelli F, Briani C, Giannini F, Benedetti L, Vitelli E, Mazzeo A, Beghi E, HCV Peripheral Nerve Study Group, Bassi F, Bibbò G, Cavaletto L, Chemello L, Cimino L, Bogliun G, Faggi LM, Ghiglione E, Iodice R, Girlanda P, Schenone A, Vita G, Zara G (2006) Prevalence and characteristics of peripheral neuropathy in hepatitis c virus population. J Neurol Neurosurg Psychiatry 77(5):626–629

    Google Scholar 

  • Sharma N, Marzo SJ, Jones KJ, Foecking EM (2010) Electrical stimulation and testosterone differentially enhance expression of regeneration-associated genes. Exp Neurol 223(1):183–191

    Google Scholar 

  • Shen Q, Pierce JD (2015) Supplementation of coenzyme Q10 among patients with type 2 diabetes mellitus. Healthcare 3(2):296–309

    Google Scholar 

  • Shi TJ, Zhang MD, Zeberg H, Nilsson J, Grunler J, Liu SX, Xiang Q, Persson J, Fried KJ, Catrina SB, Watanabe M, Arhem P, Brismar K, Hokfelt TG (2013) Coenzyme Q10 prevents peripheral neuropathy and attenuates neuron loss in the db-/db- mouse, a type 2 diabetes model. Proc Natl Acad Sci U S A 110(2):690–695

    Google Scholar 

  • Sima AAF, Zhang W, Xu G, Sugimoto K, Guberski D, Yorek MA (2000) A comparison of diabetic polyneuropathy in type II diabetic BBZDR/Wor rats and in type I diabetic BB/Wor rats. Diabetologia 43(6):786–793

    Google Scholar 

  • Simonato M, Bennett J, Boulis NM, Castro MG, Fink DJ, Goins WF, Gray SJ, Lowenstein PR, Vandenberghe LH, Wilson TJ, Wolfe JH, Glorioso JC (2013) Progress in gene therapy for neurological disorders. Nat Rev Neurol 9(5):277–291

    Google Scholar 

  • Sinnreich M, Taylor BV, Dyck PJB (2005) Diabetic neuropathies: classification, clinical features, and pathophysiological basis. Neurologist 11(2):63–79

    Google Scholar 

  • Smyth K, Affandi JS, McArthur JC, Bowtell-harris C, Mijch AM, Watson K, Costello K, Woolley IJ, Price P, Wesselingh SL, Cherry CL (2007) Prevalence of and risk factors for HIV-associated neuropathy in Melbourne, Australia 1993–2006. HIV Med 8(6):367–373

    Google Scholar 

  • Snyder MJ, Gibbs LM, Lindsay TJ (2016) Treating painful diabetic peripheral neuropathy: an update. Am Fam Physician 94(3):227–234

    Google Scholar 

  • Sobeski JK, Kerns JM, Safanda JF, Shott S, Gonzalez MH (2001) Functional and structural effects of GM-1 ganglioside treatment on peripheral nerve grafting in the rat. Microsurgery 21(3):108–115

    Google Scholar 

  • Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connection. Proc Natl Acad Sci U S A 50:703–710

    Google Scholar 

  • Suarez-Mendez S, Tovilla-Zárate CA, Juárez-Rojop IE, Bermúdez-Ocaña DY (2018) Erythropoietin: a potential drug in the management of diabetic neuropathy. Biomed Pharmacother 105:956–961

    Google Scholar 

  • Summers DW, DiAntonio A, Milbrandt J (2014) Mitochondrial dysfunction induces Sarm1-dependent cell death in sensory neurons. J Neurosci 34(28):9338–9350

    Google Scholar 

  • Sun R, Zhang J, Wei H, Meng X, Ding Q, Sun F, Cao M, Yin L, Pu Y (2017) Acetyl-l-carnitine partially prevents benzene-induced hematotoxicity and oxidative stress in C3H/He mice. Environ Toxicol Pharmacol 51:108–113

    Google Scholar 

  • Sunderland S (1947) Rate of regeneration in human peripheral nerves; analysis of the interval between injury and onset of recovery. Arch Neurol Psychiatr 58(3):251–295

    Google Scholar 

  • Surmelioglu O, Sencar L, Ozdemir S, Tarkan O, Dagkiran M, Surmelioglu N, Tuncer U, Polat S (2017) Effects of agmatine sulphate on facial nerve injuries. J Laryngol Otol 131(3):221–226

    Google Scholar 

  • Ta LE, Espeset L, Podratz J, Windebank AJ (2006) Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum–DNA binding. Neurotoxicology 27(6):992–1002

    Google Scholar 

  • Takagi T, Nakamura M, Yamada M, Hikishima K, Momoshima S, Fujiyoshi K, Shibata S, Okano HJ, Toyama Y, Okano H (2009) Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography. NeuroImage 44(3):884–892

    Google Scholar 

  • Tanaka S, Avigad G, Brodsky B, Eikenberry EF (1988) Glycation induces expansion of the molecular packing of collagen. J Mol Biol 203(2):495–505

    Google Scholar 

  • Tardiolo G, Bramanti P, Mazzon E (2018) Overview on the effects of N-Acetylcysteine in neurodegenerative diseases. Molecules 23(12):3305

    Google Scholar 

  • Terenghi G (1999) Peripheral nerve regeneration and neurotrophic factors. J Anat 194(1):1–14

    Google Scholar 

  • Theiss C, Meller K (2000) Taxol impairs anterograde axonal transport of microinjected horseradish peroxidase in dorsal root ganglia neurons in vitro. Cell Tissue Res 299(2):213–224

    Google Scholar 

  • Tofthagen C (2010) Patient perceptions associated with chemotherapy-induced peripheral neuropathy. Clin J Oncol Nurs 14(3):E22–E28

    Google Scholar 

  • Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, Fougerou C (2017) Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol 15(3):434–443

    Google Scholar 

  • Turkiew E, Falconer D, Reed N, Hoke A (2017) Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy. J Peripher Nerv Syst 22(3):162–171

    Google Scholar 

  • Vlassara H, Brownlee M, Cerami A (1981) Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus. Proc Natl Acad Sci U S A 78(8):5190–5192

    Google Scholar 

  • Wang MS, Davis AA, Culver DG, Glass JD (2002) WldS mice are resistant to paclitaxel (taxol) neuropathy. Ann Neurol 52(4):442–447

    Google Scholar 

  • Wang L, Chopp M, Szalad A, Jia L, Lu X, Lu M, Zhang L, Zhang Y, Zhang R, Zhang ZG (2015a) Sildenafil ameliorates long term peripheral neuropathy in type II diabetic mice. PLoS One 10(2):e0118134

    Google Scholar 

  • Wang L, Yuan D, Zhang D, Zhang W, Liu C, Cheng H, Song Y, Tan Q (2015b) Ginsenoside re promotes nerve regeneration by facilitating the proliferation, differentiation and migration of Schwann cells via the ERK- and JNK-dependent pathway in rat model of sciatic nerve crush injury. Cell Mol Neurobiol 35(6):827–840

    Google Scholar 

  • Wang J, Qiao Y, Yang R-S, Zhang C-K, Wu H-H, Lin J-J, Zhang T, Chen T, Li Y-Q, Dong Y-L, Li J-L (2017) The synergistic effect of treatment with triptolide and MK-801 in the rat neuropathic pain model. Mol Pain 13:1744806917746564

    Google Scholar 

  • Wesselink E, Winkels RM, van Baar H, Geijsen AJMR, van Zutphen M, van Halteren HK, Hansson BME, Radema SA, de Wilt JHW, Kampman E, Kok DEG (2018) Dietary intake of magnesium or calcium and chemotherapy-induced peripheral neuropathy in colorectal cancer patients. Nutrients 10(4):398

    Google Scholar 

  • WHO (2011) Global status report on noncommunicable diseases 2010: description of the global burden of NCDs, their risk factors and determinants. WHO, Geneva

    Google Scholar 

  • Winer JB (2014) An update in Guillain-Barré syndrome. J Autoimmune Dis 2014:793024

    Google Scholar 

  • Won JC, Kim SS, Ko KS, Cha BY (2014) Current status of diabetic peripheral neuropathy in Korea: report of a hospital-based study of type 2 diabetic patients in Korea by the diabetic neuropathy study group of the Korean diabetes association. Diabetes Metab J 38(1):25–31

    Google Scholar 

  • Wright JC (1984) Cancer chemotherapy: past, present, and future – part I. J Natl Med Assoc 76(8):773–784

    Google Scholar 

  • Wu Z, Mata M, Fink DJ (2012) Prolonged regulatable expression of EPO from an HSV vector using the LAP2 promoter element. Gene Ther 19(11):1107–1113

    Google Scholar 

  • Xiong Y, Mahmood A, Chopp M (2010) Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Invest Drugs 11(3):298–308

    Google Scholar 

  • Xu Q, Pan J, Yu J, Liu X, Liu L, Zuo X, Wu P, Deng H, Zhang J, Ji A (2013) Meta-analysis of methylcobalamin alone and in combination with lipoic acid in patients with diabetic peripheral neuropathy. Diabetes Res Clin Pract 101(2):99–105

    Google Scholar 

  • Yamamoto K, Amako M, Yamamoto Y, Tsuchihara T, Nukada H, Yoshihara Y, Arino H, Fujita M, Uenoyama M, Tachibana S (2013) Therapeutic effect of exendin-4, a long-acting analogue of glucagon-like peptide-1 receptor agonist, on nerve regeneration after the crush nerve injury. Biomed Res Int 2013:315848

    Google Scholar 

  • Yamasaki T, Fujiwara H, Oda R, Mikami Y, Ikeda T, Nagae M, Shirai T, Morisaki S, Ikoma K, Masugi-Tokita M, Yamada K, Kawata M, Kubo T (2015) In vivo evaluation of rabbit sciatic nerve regeneration with diffusion tensor imaging (DTI): correlations with histology and behavior. Magn Reson Imaging 33(1):95–101

    Google Scholar 

  • Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, Pinsky D, Stern D (1994) Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269(13):9889–9897

    Google Scholar 

  • Yang Y, Zhang YG, Lin GA, Xie HQ, Pan HT, Huang BQ, Liu JD, Liu H, Zhang N, Li L, Chen JH (2014) Spinal changes of a newly isolated neuropeptide endomorphin-2 concomitant with vincristine-induced allodynia. PLoS One 9(2):e89583

    Google Scholar 

  • Yin Z-S, Zhang H, Gao W (2010) Erythropoietin promotes functional recovery and enhances nerve regeneration after peripheral nerve injury in rats. AJNR Am J Neuroradiol 31(3):509–515

    Google Scholar 

  • Yorek MA, Dunlap JA, Ginsberg BH (1987) myo-Inositol metabolism in 41A3 neuroblastoma cells: effects of high glucose and sorbitol levels. J Neurochem 48(1):53–61

    Google Scholar 

  • Yuki N, Yamada M, Koga M, Odaka M, Susuki K, Tagawa Y, Ueda S, Kasama T, Ohnishi A, Hayashi S, Takahashi H, Kamijo M, Hirata K (2001) Animal model of axonal Guillain-Barré syndrome induced by sensitization with GM1 ganglioside. Ann Neurol 49(6):712–720

    Google Scholar 

  • Zan Y, Kuai CX, Qiu ZX, Huang F (2017) Berberine ameliorates diabetic neuropathy: TRPV1 modulation by PKC pathway. Am J Chin Med 45(8):1709–1723

    Google Scholar 

  • Zanon R, Cartarozzi L, Victório S, Moraes J, Morari J, Velloso L, Oliveira A (2010) Interferon (IFN) beta treatment induces major histocompatibility complex (MHC) class I expression in the spinal cord and enhances axonal growth and motor function recovery following sciatic nerve crush in mice. Neuropathol Appl Neurobiol 36(6):515–534

    Google Scholar 

  • Zhang Z, Liew CW, Handy DE, Zhang Y, Leopold JA, Hu J, Guo L, Kulkarni RN, Loscalzo J, Stanton RC (2010) High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis. FASEB J 24(5):1497–1505

    Google Scholar 

  • Zhang X, Zhang X, Wang F (2012) Intracellular transduction and potential of Tat PTD and its analogs: from basic drug delivery mechanism to application. Expert Opin Drug Deliv 9(4):457–472

    Google Scholar 

  • Zhang L, Mao W, Guo X, Wu Y, Li C, Lu Z, Su G, Li X, Liu Z, Guo R, Jie X, Wen Z, Liu X (2013) Ginkgo biloba extract for patients with early diabetic nephropathy: a systematic review. Evid Based Complement Alternat Med 2013:689142

    Google Scholar 

  • Zhang YG, Sheng QS, Wang HK, Lv L, Zhang J, Chen JM, Xu H (2014) Triptolide improves nerve regeneration and functional recovery following crush injury to rat sciatic nerve. Neurosci Lett 561:198–202

    Google Scholar 

  • Zhang H-N, Sun Y-J, He H-Q, Li H-Y, Xue Q-L, Liu Z-M, Xu G-M, Dong L-H (2018a) Berberine promotes nerve regeneration through IGFR-mediated JNK-AKT signal pathway. Mol Med Rep 18(6):5030–5036

    Google Scholar 

  • Zhang Q, Ji L, Zheng H, Li Q, Xiong Q, Sun W, Zhu X, Li Y, Lu B, Liu X, Zhang S (2018b) Low serum phosphate and magnesium levels are associated with peripheral neuropathy in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 146:1–7

    Google Scholar 

  • Zheng X, Ouyang H, Liu S, Mata M, Fink DJ, Hao S (2011) TNFalpha is involved in neuropathic pain induced by nucleoside reverse transcriptase inhibitor in rats. Brain Behav Immun 25(8):1668–1676

    Google Scholar 

  • Zheng L, Hui Q, Tang L, Zheng L, Jin Z, Yu B, Wang Z, Lin P, Yu W, Li H, Li X, Wang X (2015) TAT-mediated acidic fibroblast growth factor delivery to the dermis improves wound healing of deep skin tissue in rat. PLoS One 10(8):e0135291

    Google Scholar 

  • Zhou Z, Peng X, Hao S, Fink DJ, Mata M (2008) HSV-mediated transfer of interleukin-10 reduces inflammatory pain through modulation of membrane tumor necrosis factor alpha in spinal cord microglia. Gene Ther 15(3):183–190

    Google Scholar 

  • Zhou Y, Tao J, Yu H, Ni J, Zeng L, Teng Q, Kim KS, Zhao GP, Guo X, Yao Y (2012) Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun 80(3):1243–1251

    Google Scholar 

  • Zhou P, Xie W, He S, Sun Y, Meng X, Sun G, Sun X (2019) Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis. Cell 8(3):204

    Google Scholar 

  • Zhu Z, Zhou X, He B, Dai T, Zheng C, Yang C, Zhu S, Zhu J, Zhu Q, Liu X (2015) Ginkgo biloba extract (EGb 761) promotes peripheral nerve regeneration and neovascularization after acellular nerve allografts in a rat model. Cell Mol Neurobiol 35(2):273–282

    Google Scholar 

  • Ziaei S, Halaby R (2016) Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: a mini review. Avicenna J Phytomed 6(2):149–164

    Google Scholar 

  • Ziegler D, Gries FA, Spüler M, Lessmann F (1992) The epidemiology of diabetic neuropathy. J Diabetes Complicat 6(1):49–57

    Google Scholar 

  • Zochodne DW, Levy D (2005) Nitric oxide in damage, disease and repair of the peripheral nervous system. Cell Mol Biol (Noisy-le-Grand) 51(3):255–267

    Google Scholar 

Download references

Acknowledgments

This work was supported by a UCL Graduate Research Scholarship and England Golf Trust Scholarship to M.W. and Dr. Miriam and Sheldon G. Adelson Medical Research Foundation and NIH (R01 NS091260) to A.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Höke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wilcox, M., Cetinkaya-Fisgin, A., Höke, A. (2020). Regenerative Therapies for Acquired Axonal Neuropathies. In: Phillips, J., Hercher, D., Hausner, T. (eds) Peripheral Nerve Tissue Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-06217-0_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06217-0_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06217-0

  • Online ISBN: 978-3-030-06217-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics