Skip to main content

Drug Therapies for Peripheral Nerve Injuries

  • Living reference work entry
  • First Online:
Peripheral Nerve Tissue Engineering and Regeneration

Abstract

Following a peripheral nerve injury (PNI), neurons have the capacity to regenerate but the rate is remarkably slow. Microsurgical treatments are used to reconnect the nerve stumps following a PNI and encourage the regeneration of axons; however, there are currently no therapies available to promote the rate of this regeneration. Drug therapies available for PNI tend to focus on the resulting symptoms such as neuropathic pain, inflammation, and weakness without modifying the condition itself. Effectively designed pharmacological treatments could potentially increase the regenerative rate as well as maintain neuronal viability and improve axonal specificity to target organs. Appropriate drug agents need to target specific events following a nerve injury and advancements in understanding of the molecular and cellular cascades which follow injury could inform this. Some drugs and targets within signaling pathways have been identified, but challenges remain with clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed I, Liu HY, Mamiya PC, Ponery AS, Babu AN, Weik T, Schindler M, Meiners S (2006) Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro. J Biomed Mater Res A 76:851–860

    Article  Google Scholar 

  • Allodi I, Udina E, Navarro X (2012) Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 98:16–37

    Article  Google Scholar 

  • Angius D, Wang H, Spinner RJ, Gutierrez-Cotto Y, Yaszemski MJ, Windebank AJ (2012) A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials 33:8034–8039

    Article  Google Scholar 

  • Azizi S, Mohammadi R, Amini K, Fallah R (2012) Effects of topically administered FK506 on sciatic nerve regeneration and reinnervation after vein graft repair of short nerve gaps. Neurosurg Focus 32:E5

    Article  Google Scholar 

  • Baker R (2006) Gait analysis methods in rehabilitation. J Neuroeng Rehabil 3:4

    Article  Google Scholar 

  • Baldwin SP, Krewson CE, Saltzman WM (1996) PC12 cell aggregation and neurite growth in gels of collagen, laminin and fibronectin. Int J Dev Neurosci 14:351–364

    Article  Google Scholar 

  • Barhwal K, Hota SK, Prasad D, Singh SB, Ilavazhagan G (2008) Hypoxia-induced deactivation of NGF-mediated ERK1/2 signaling in hippocampal cells: neuroprotection by acetyl-L-carnitine. J Neurosci Res 86:2705–2721

    Article  Google Scholar 

  • Benedetti MG, Beghi E, De Tanti A, Cappozzo A, Basaglia N, Cutti AG, Cereatti A, Stagni R, Verdini F, Manca M, Fantozzi S, Mazza C, Camomilla V, Campanini I, Castagna A, Cavazzuti L, Del Maestro M, Croce UD, Gasperi M, Leo T, Marchi P, Petrarca M, Piccinini L, Rabuffetti M, Ravaschio A, Sawacha Z, Spolaor F, Tesio L, Vannozzi G, Visintin I, Ferrarin M (2017) SIAMOC position paper on gait analysis in clinical practice: general requirements, methods and appropriateness. Results of an Italian consensus conference. Gait Posture 58:252–260

    Article  Google Scholar 

  • Benito C, Davis CM, Gomez-Sanchez JA, Turmaine M, Meijer D, Poli V, Mirsky R, Jessen KR (2017) STAT3 controls the long-term survival and phenotype of repair Schwann cells during nerve regeneration. J Neurosci 37:4255–4269

    Article  Google Scholar 

  • Bhangra KS, Busuttil F, Phillips JB, Rahim AA (2016) Using stem cells to grow artificial tissue for peripheral nerve repair. Stem Cells Int 2016:7502178

    Article  Google Scholar 

  • Boerma M, Fu Q, Wang J, Loose DS, Bartolozzi A, Ellis JL, Mcgonigle S, Paradise E, Sweetnam P, Fink LM, Vozenin-Brotons MC, Hauer-Jensen M (2008) Comparative gene expression profiling in three primary human cell lines after treatment with a novel inhibitor of Rho kinase or atorvastatin. Blood Coagul Fibrinolysis 19:709–718

    Article  Google Scholar 

  • Bota O, Fodor L (2019) The influence of drugs on peripheral nerve regeneration. Drug Metab Rev 51:1–27

    Google Scholar 

  • Bozkurt A, Brook GA, Moellers S, Lassner F, Sellhaus B, Weis J, Woeltje M, Tank J, Beckmann C, Fuchs P, Damink LO, Schugner F, Heschel I, Pallua N (2007) In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng 13:2971–2979

    Article  Google Scholar 

  • Brannon-Peppas L (1997) Polymers in controlled drug delivery. MD+DI Qmed. Medical Plastics and Biomaterials Magazine, Santa Monica, California

    Google Scholar 

  • Breyer MD, Look AT, Cifra A (2015) From bench to patient: model systems in drug discovery. Dis Model Mech 8:1171–1174

    Article  Google Scholar 

  • Burnett MG, Zager EL (2004) Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 16:E1

    Article  Google Scholar 

  • Busuttil F, Rahim AA, Phillips JB (2017) Combining gene and stem cell therapy for peripheral nerve tissue engineering. Stem Cells Dev 26:231–238

    Article  Google Scholar 

  • Chan KM, Gordon T, Zochodne DW, Power HA (2014) Improving peripheral nerve regeneration: from molecular mechanisms to potential therapeutic targets. Exp Neurol 261:826–835

    Article  Google Scholar 

  • Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–233

    Article  Google Scholar 

  • Chen P, Piao X, Bonaldo P (2015) Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol 130:605–618

    Article  Google Scholar 

  • Cheng C, Webber CA, Wang J, Xu Y, Martinez JA, Liu WQ, Mcdonald D, Guo GF, Nguyen MD, Zochodne DW (2008) Activated RHOA and peripheral axon regeneration. Exp Neurol 212:358–369

    Article  Google Scholar 

  • Chiang MC, Cheng YC, Chen HM, Liang YJ, Yen CH (2014) Rosiglitazone promotes neurite outgrowth and mitochondrial function in N2A cells via PPARgamma pathway. Mitochondrion 14:7–17

    Article  Google Scholar 

  • Clinicaltrials.gov (2019a) 4-aminopyridine treatment for nerve injury [Online]. U.S. National Library of Medicine. https://ClinicalTrials.gov/show/NCT03701581. Accessed 2019

  • Clinicaltrials.gov (2019b) Tesamorelin to improve functional outcomes after peripheral nerve injury [Online]. U.S. National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT03150511?cond=nerve+injury&draw=3&rank=4. Accessed 2019

  • Demidenko ZN, Blagosklonny MV (2009) At concentrations that inhibit mTOR, resveratrol suppresses cellular senescence. Cell Cycle 8:1901–1904

    Article  Google Scholar 

  • Denayer T, Stohr T, Roy MV (2014) Animal models in translational medicine: validation and prediction. New Horiz Transl Med 2:5–11

    Google Scholar 

  • Deumens R, Bozkurt A, Meek MF, Marcus MA, Joosten EA, Weis J, Brook GA (2010) Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol 92:245–276

    Article  Google Scholar 

  • Donaldson K, Hoke A (2014) Studying axonal degeneration and regeneration using in vitro and in vivo model: the translational potential. Future Neurol 9:461–473

    Article  Google Scholar 

  • Dubovy P, Jancalek R, Kubek T (2013) Role of inflammation and cytokines in peripheral nerve regeneration. Int Rev Neurobiol 108:173–206

    Article  Google Scholar 

  • Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665

    Article  Google Scholar 

  • Dunn J, Blight A (2011) Dalfampridine: a brief review of its mechanism of action and efficacy as a treatment to improve walking in patients with multiple sclerosis. Curr Med Res Opin 27:1415–1423

    Article  Google Scholar 

  • Elbaz AA, Abu-Almaaty AH, Hassan MK, Mohammed EA, Aziz MM (2017) Therapeutic role of Schwann cells and resveratrol or melatonin combination in peripheral nerve injured rat models. J Exp Appl Animal Sci 2:190–210

    Article  Google Scholar 

  • Elfar JC, Jacobson JA, Puzas JE, Rosier RN, Zuscik MJ (2008) Erythropoietin accelerates functional recovery after peripheral nerve injury. J Bone Joint Surg Am 90:1644–1653

    Article  Google Scholar 

  • Eto M, Sumi H, Fujimura H, Yoshikawa H, Sakoda S (2008) Pioglitazone promotes peripheral nerve remyelination after crush injury through CD36 upregulation. J Peripher Nerv Syst 13:242–248

    Article  Google Scholar 

  • Fansa H, Keilhoff G, Altmann S, Plogmeier K, Wolf G, Schneider W (1999) The effect of the immunosuppressant FK 506 on peripheral nerve regeneration following nerve grafting. J Hand Surg (Br) 24:38–42

    Article  Google Scholar 

  • Faroni A, Mobasseri SA, Kingham PJ, Reid AJ (2015) Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev 82–83:160–167

    Article  Google Scholar 

  • Federici T, Liu JK, Teng Q, Yang J, Boulis NM (2007) A means for targeting therapeutics to peripheral nervous system neurons with axonal damage. Neurosurgery 60:911–918; discussion 911–8

    Article  Google Scholar 

  • Fex Svennigsen A, Dahlin LB (2013) Repair of the peripheral nerve-remyelination that works. Brain Sci 3:1182–1197

    Article  Google Scholar 

  • Fu SY, Gordon T (1995) Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy. J Neurosci 15:3876–3885

    Article  Google Scholar 

  • Fu Y, Kao WJ (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 7:429–444

    Article  Google Scholar 

  • Fuentes EO, Leemhuis J, Stark GB, Lang EM (2008) Rho kinase inhibitors Y27632 and H1152 augment neurite extension in the presence of cultured Schwann cells. J Brachial Plex Peripher Nerve Inj 3:19

    Google Scholar 

  • Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 8:110

    Article  Google Scholar 

  • Geuna S, Raimondo S, Fregnan F, Haastert-Talini K, Grothe C (2016) In vitro models for peripheral nerve regeneration. Eur J Neurosci 43:287–296

    Article  Google Scholar 

  • Gingras M, Bergeron J, Dery J, Durham HD, Berthod F (2003) In vitro development of a tissue-engineered model of peripheral nerve regeneration to study neurite growth. FASEB J 17:2124–2126

    Article  Google Scholar 

  • Gold BG, Zhong YP (2004) FK506 requires stimulation of the extracellular signal-regulated kinase 1/2 and the steroid receptor chaperone protein p23 for neurite elongation. Neurosignals 13:122–129

    Article  Google Scholar 

  • Gold BG, Storm-Dickerson T, Austin DR (1994) The immunosuppressant FK506 increases functional recovery and nerve regeneration following peripheral nerve injury. Restor Neurol Neurosci 6:287–296

    Google Scholar 

  • Gold BG, Katoh K, Storm-Dickerson T (1995) The immunosuppressant FK506 increases the rate of axonal regeneration in rat sciatic nerve. J Neurosci 15:7509–7516

    Article  Google Scholar 

  • Gold BG, Densmore V, Shou W, Matzuk MM, Gordon HS (1999) Immunophilin FK506-binding protein 52 (not FK506-binding protein 12) mediates the neurotrophic action of FK506. J Pharmacol Exp Ther 289:1202–1210

    Google Scholar 

  • Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M, Palomo-Irigoyen M, Varela-Rey M, Griffith M, Hantke J, Macias-Camara N, Azkargorta M, Aurrekoetxea I, De Juan VG, Jefferies HB, Aspichueta P, Elortza F, Aransay AM, Martinez-Chantar ML, Baas F, Mato JM, Mirsky R, Woodhoo A, Jessen KR (2015) Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J Cell Biol 210:153–168

    Article  Google Scholar 

  • Greek R (2012) Animal models in drug development. IntechOpen, London

    Google Scholar 

  • Grisk O, Schluter T, Reimer N, Zimmermann U, Katsari E, Plettenburg O, Lohn M, Wollert HG, Rettig R (2012) The Rho kinase inhibitor SAR407899 potently inhibits endothelin-1-induced constriction of renal resistance arteries. J Hypertens 30:980–989

    Article  Google Scholar 

  • Hall SM (1986) Regeneration in cellular and acellular autografts in the peripheral nervous system. Neuropathol Appl Neurobiol 12:27–46

    Article  Google Scholar 

  • Hall S (2005) The response to injury in the peripheral nervous system. J Bone Joint Surg Br 87:1309–1319

    Article  Google Scholar 

  • Hart AM, Wiberg M, Youle M, Terenghi G (2002) Systemic acetyl-L-carnitine eliminates sensory neuronal loss after peripheral axotomy: a new clinical approach in the management of peripheral nerve trauma. Exp Brain Res 145:182–189

    Article  Google Scholar 

  • Hart AM, Terenghi G, Kellerth JO, Wiberg M (2004) Sensory neuroprotection, mitochondrial preservation, and therapeutic potential of N-acetyl-cysteine after nerve injury. Neuroscience 125:91–101

    Article  Google Scholar 

  • Hart AM, Terenghi G, Wiberg M (2008) Neuronal death after peripheral nerve injury and experimental strategies for neuroprotection. Neurol Res 30:999–1011

    Article  Google Scholar 

  • Herbert CB, Nagaswami C, Bittner GD, Hubbell JA, Weisel JW (1998) Effects of fibrin micromorphology on neurite growth from dorsal root ganglia cultured in three-dimensional fibrin gels. J Biomed Mater Res 40:551–559

    Article  Google Scholar 

  • Hiraga A, Kuwabara S, Doya H, Kanai K, Fujitani M, Taniguchi J, Arai K, Mori M, Hattori T, Yamashita T (2006) Rho-kinase inhibition enhances axonal regeneration after peripheral nerve injury. J Peripher Nerv Syst 11:217–224

    Article  Google Scholar 

  • Hoke A, Brushart T (2010) Introduction to special issue: challenges and opportunities for regeneration in the peripheral nervous system. Exp Neurol 223:1–4

    Article  Google Scholar 

  • Hoke A, Keswani SC (2005) Neuroprotection in the PNS: erythropoietin and immunophilin ligands. Ann N Y Acad Sci 1053:491–501

    Article  Google Scholar 

  • Hopkins AM, Desimone E, Chwalek K, Kaplan DL (2015) 3D in vitro modeling of the central nervous system. Prog Neurobiol 125:1–25

    Article  Google Scholar 

  • Isaacs J (2013) Major peripheral nerve injuries. Hand Clin 29:371–382

    Article  Google Scholar 

  • Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594:3521–3531

    Article  Google Scholar 

  • Jessen KR, Mirsky R, Salzer J (2008) Introduction. Schwann cell biology. Glia 56:1479–1480

    Article  Google Scholar 

  • Jin E, Sano M (2008) Neurite outgrowth of NG108-15 cells induced by heat shock protein 90 inhibitors. Cell Biochem Funct 26:825–832

    Article  Google Scholar 

  • Jones KJ, Kinderman NB, Oblinger MM (1997) Alterations in glial fibrillary acidic protein (GFAP) mRNA levels in the hamster facial motor nucleus: effects of axotomy and testosterone. Neurochem Res 22:1359–1366

    Article  Google Scholar 

  • Jones S, Eisenberg HM, Jia X (2016) Advances and future applications of augmented peripheral nerve regeneration. Int J Mol Sci 17

    Google Scholar 

  • Joshi AR, Bobylev I, Zhang G, Sheikh KA, Lehmann HC (2015) Inhibition of Rho-kinase differentially affects axon regeneration of peripheral motor and sensory nerves. Exp Neurol 263:28–38

    Article  Google Scholar 

  • Jost SC, Doolabh VB, Mackinnon SE, Lee M, Hunter D (2000) Acceleration of peripheral nerve regeneration following FK506 administration. Restor Neurol Neurosci 17:39–44

    Google Scholar 

  • Karsidag S, Akcal A, Sahin S, Karsidag S, Kabukcuoglu F, Ugurlu K (2012) Neurophysiological and morphological responses to treatment with acetyl-L-carnitine in a sciatic nerve injury model: preliminary data. J Hand Surg Eur Vol 37:529–536

    Article  Google Scholar 

  • Klesse LJ, Meyers KA, Marshall CJ, Parada LF (1999) Nerve growth factor induces survival and differentiation through two distinct signaling cascades in PC12 cells. Oncogene 18:2055–2068

    Article  Google Scholar 

  • Knott EP, Assi M, Pearse DD (2014) Cyclic AMP signaling: a molecular determinant of peripheral nerve regeneration. Biomed Res Int 2014:651625

    Article  Google Scholar 

  • Ko KR, Frampton JP (2016) Developments in 3D neural cell culture models: the future of neurotherapeutics testing? Expert Rev Neurother 16:739–741

    Article  Google Scholar 

  • Kofron CM, Fong VJ, Hoffman-Kim D (2009) Neurite outgrowth at the interface of 2D and 3D growth environments. J Neural Eng 6:016002

    Article  Google Scholar 

  • Kokkalis ZT, Soucacos PN, Terzis JK (2009) Effect of acetyl-L-carnitine on axonal sprouting following donor nerve injury distal to an end-to-side neurorrhaphy model. J Reconstr Microsurg 25:483–495

    Article  Google Scholar 

  • Kostopoulos VK, Davis CL, Terzis JK (2009) Effects of acetylo-L-carnitine in end-to-side neurorrhaphy: a pilot study. Microsurgery 29:456–463

    Article  Google Scholar 

  • Kraus D, Boyle V, Leibig N, Stark GB, Penna V (2015) The neuro-spheroid – a novel 3D in vitro model for peripheral nerve regeneration. J Neurosci Methods 246:97–105

    Article  Google Scholar 

  • Krekoski CA, Neubauer D, Zuo J, Muir D (2001) Axonal regeneration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan. J Neurosci 21:6206–6213

    Article  Google Scholar 

  • Kuffler DP (2014) An assessment of current techniques for inducing axon regeneration and neurological recovery following peripheral nerve trauma. Prog Neurobiol 116:1–12

    Article  Google Scholar 

  • Kujawa KA, Kinderman NB, Jones KJ (1989) Testosterone-induced acceleration of recovery from facial paralysis following crush axotomy of the facial nerve in male hamsters. Exp Neurol 105:80–85

    Article  Google Scholar 

  • Labroo P, Ho S, Sant H, Shea J, Gale BK, Agarwal J (2016) Controlled delivery of FK506 to improve nerve regeneration. Shock 46:154–159

    Article  Google Scholar 

  • Labroo P, Shea J, Sant H, Gale B, Agarwal J (2017) Effect of combining FK506 and neurotrophins on neurite branching and elongation. Muscle Nerve 55:570–581

    Article  Google Scholar 

  • Lee M, Doolabh VB, Mackinnon SE, Jost S (2000) FK506 promotes functional recovery in crushed rat sciatic nerve. Muscle Nerve 23:633–640

    Article  Google Scholar 

  • Lezana JP, Dagan SY, Robinson A, Goldstein RS, Fainzilber M, Bronfman FC, Bronfman M (2016) Axonal PPARgamma promotes neuronal regeneration after injury. Dev Neurobiol 76:688–701

    Article  Google Scholar 

  • Lie M, Grover M, Whitlon DS (2010) Accelerated neurite growth from spiral ganglion neurons exposed to the Rho kinase inhibitor H-1152. Neuroscience 169:855–862

    Article  Google Scholar 

  • Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    Article  Google Scholar 

  • Lingor P, Teusch N, Schwarz K, Mueller R, Mack H, Bahr M, Mueller BK (2007) Inhibition of Rho kinase (ROCK) increases neurite outgrowth on chondroitin sulphate proteoglycan in vitro and axonal regeneration in the adult optic nerve in vivo. J Neurochem 103:181–189

    Google Scholar 

  • Ma TC, Willis DE (2015) What makes a RAG regeneration associated? Front Mol Neurosci 8:43

    Google Scholar 

  • Madura T, Yamashita T, Kubo T, Fujitani M, Hosokawa K, Tohyama M (2004) Activation of Rho in the injured axons following spinal cord injury. EMBO Rep 5:412–417

    Article  Google Scholar 

  • Madura T, Kubo T, Tanag M, Matsuda K, Tomita K, Yano K, Hosokawa K (2007) The Rho-associated kinase inhibitor fasudil hydrochloride enhances neural regeneration after axotomy in the peripheral nervous system. Plast Reconstr Surg 119:526–535

    Article  Google Scholar 

  • Madura T, Tomita K, Terenghi G (2011) Ibuprofen improves functional outcome after axotomy and immediate repair in the peripheral nervous system. J Plast Reconstr Aesthet Surg 64:1641–1646

    Article  Google Scholar 

  • Manaenko A, Fathali N, Chen H, Suzuki H, Williams S, Zhang JH, Tang J (2010) Heat shock protein 70 upregulation by geldanamycin reduces brain injury in a mouse model of intracerebral hemorrhage. Neurochem Int 57:844–850

    Article  Google Scholar 

  • Marin J, Blanco T, Marin JJ, Moreno A, Martitegui E, Aragues JC (2019) Integrating a gait analysis test in hospital rehabilitation: a service design approach. PLoS One 14:e0224409

    Article  Google Scholar 

  • Martin G, Duez H, Blanquart C, Berezowski V, Poulain P, Fruchart JC, Najib-Fruchart J, Glineur C, Staels B (2001) Statin-induced inhibition of the Rho-signaling pathway activates PPARalpha and induces HDL apoA-I. J Clin Invest 107:1423–1432

    Article  Google Scholar 

  • Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    Article  Google Scholar 

  • Matos L, Gouveia AM, Almeida H (2017) Resveratrol attenuates copper-induced senescence by improving cellular proteostasis. Oxidative Med Cell Longev 2017:3793817

    Google Scholar 

  • Mattsson P, Janson AM, Aldskogius H, Svensson M (2001) Nimodipine promotes regeneration and functional recovery after intracranial facial nerve crush. J Comp Neurol 437:106–117

    Article  Google Scholar 

  • Mattsson P, Frostell A, Bjorck G, Persson JKE, Hakim R, Zedenius J, Svensson M (2018) Recovery of voice after reconstruction of the recurrent laryngeal nerve and adjuvant nimodipine. World J Surg 42:632–638

    Article  Google Scholar 

  • Mekaj AY, Morina AA, Bytyqi CI, Mekaj YH, Duci SB (2014) Application of topical pharmacological agents at the site of peripheral nerve injury and methods used for evaluating the success of the regenerative process. J Orthop Surg Res 9:94

    Article  Google Scholar 

  • Mohammadi R, Hirsaee MA, Amini K (2013) Improvement of functional recovery of transected peripheral nerve by means of artery grafts filled with diclofenac. Int J Surg 11:259–264

    Article  Google Scholar 

  • Mokarram N, Merchant A, Mukhatyar V, Patel G, Bellamkonda RV (2012) Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 33:8793–8801

    Article  Google Scholar 

  • Moschou M, Kosmidis EK, Kaloyianni M, Geronikaki A, Dabarakis N, Theophilidis G (2008) In vitro assessment of the neurotoxic and neuroprotective effects of N-acetyl-L-cysteine (NAC) on the rat sciatic nerve fibers. Toxicol In Vitro 22:267–274

    Article  Google Scholar 

  • Mueller BK, Mack H, Teusch N (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4:387–398

    Article  Google Scholar 

  • Mulder T, Nienhuis B, Pauwels J (1998) Clinical gait analysis in a rehabilitation context: some controversial issues. Clin Rehabil 12:99–106

    Article  Google Scholar 

  • Navarro X (2016) Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: a critical overview. Eur J Neurosci 43:271–286

    Article  Google Scholar 

  • Nishio Y, Koda M, Kitajo K, Seto M, Hata K, Taniguchi J, Moriya H, Fujitani M, Kubo T, Yamashita T (2006) Delayed treatment with Rho-kinase inhibitor does not enhance axonal regeneration or functional recovery after spinal cord injury in rats. Exp Neurol 200:392–397

    Article  Google Scholar 

  • Nunez G, Del Peso L (1998) Linking extracellular survival signals and the apoptotic machinery. Curr Opin Neurobiol 8:613–618

    Article  Google Scholar 

  • Olson MF (2008) Applications for ROCK kinase inhibition. Curr Opin Cell Biol 20:242–248

    Article  Google Scholar 

  • Padhy BM, Gupta YK (2011) Drug repositioning: re-investigating existing drugs for new therapeutic indications. J Postgrad Med 57:153–160

    Article  Google Scholar 

  • Pang X, Yi T, Yi Z, Cho SG, Qu W, Pinkaew D, Fujise K, Liu M (2009) Morelloflavone, a biflavonoid, inhibits tumor angiogenesis by targeting rho GTPases and extracellular signal-regulated kinase signaling pathways. Cancer Res 69:518–525

    Article  Google Scholar 

  • Pearse DD, Pereira FC, Marcillo AE, Bates ML, Berrocal YA, Filbin MT, Bunge MB (2004) cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 10:610–616

    Article  Google Scholar 

  • Phan DQ, Schuind F (2012) Tolerance and effects of FK506 (tacrolimus) on nerve regeneration: a pilot study. J Hand Surg Eur Vol 37:537–543

    Article  Google Scholar 

  • Pillai O, Panchagnula R (2001) Polymers in drug delivery. Curr Opin Chem Biol 5:447–451

    Article  Google Scholar 

  • Pittier R, Sauthier F, Hubbell JA, Hall H (2005) Neurite extension and in vitro myelination within three-dimensional modified fibrin matrices. J Neurobiol 63:1–14

    Article  Google Scholar 

  • Poppler LH, Ee X, Schellhardt L, Hoben GM, Pan D, Hunter DA, Yan Y, Moore AM, Snyder-Warwick AK, Stewart SA, Mackinnon SE, Wood MD (2016) Axonal growth arrests after an increased accumulation of Schwann cells expressing senescence markers and stromal cells in acellular nerve allografts. Tissue Eng Part A 22:949–961

    Article  Google Scholar 

  • Puhl AC, Milton FA, Cvoro A, Sieglaff DH, Campos JC, Bernardes A, Filgueira CS, Lindemann JL, Deng T, Neves FA, Polikarpov I, Webb P (2015) Mechanisms of peroxisome proliferator activated receptor gamma regulation by non-steroidal anti-inflammatory drugs. Nucl Recept Signal 13:e004

    Article  Google Scholar 

  • Quick TJ, Singh AK, Fox M, Sinisi M, Macquillan A (2016) A quantitative assessment of the functional recovery of flexion of the elbow after nerve transfer in patients with a brachial plexus injury. Bone Joint J 98-B:1517–1520

    Article  Google Scholar 

  • Quintanilla RA, Utreras E, Cabezas-Opazo FA (2014) Role of PPAR gamma in the differentiation and function of neurons. PPAR Res 2014:768594

    Article  Google Scholar 

  • Raff MC, Hornby-Smith A, Brockes JP (1978) Cyclic AMP as a mitogenic signal for cultured rat Schwann cells. Nature 273:672–673

    Article  Google Scholar 

  • Rayner M, Laranjeira S, Evans R, Shipley R, Healy J, Phillips J (2018) Developing an in vitro model to screen drugs for nerve regeneration. Anat Rec 301:1628–1637

    Google Scholar 

  • Rayner M, Brown H, Wilcox M, Phillips J, Quick T (2019) Quantifying regeneration in patients following peripheral nerve injury. J Plast Reconstr Aesthet Surg 73:201–208

    Google Scholar 

  • Reid AJ, Shawcross SG, Hamilton AE, Wiberg M, Terenghi G (2009) N-acetylcysteine alters apoptotic gene expression in axotomised primary sensory afferent subpopulations. Neurosci Res 65:148–155

    Article  Google Scholar 

  • Roloff F, Scheiblich H, Dewitz C, Dempewolf S, Stern M, Bicker G (2015) Enhanced neurite outgrowth of human model (NT2) neurons by small-molecule inhibitors of Rho/ROCK signaling. PLoS One 10:e0118536

    Article  Google Scholar 

  • Rustemeyer J, Van De Wal R, Keipert C, Dicke U (2010) Administration of low-dose FK 506 accelerates histomorphometric regeneration and functional outcomes after allograft nerve repair in a rat model. J Craniomaxillofac Surg 38:134–140

    Article  Google Scholar 

  • Saheb-Al-Zamani M, Yan Y, Farber SJ, Hunter DA, Newton P, Wood MD, Stewart SA, Johnson PJ, Mackinnon SE (2013) Limited regeneration in long acellular nerve allografts is associated with increased Schwann cell senescence. Exp Neurol 247:165–177

    Article  Google Scholar 

  • Scheller K, Scheller C (2012) Nimodipine promotes regeneration of peripheral facial nerve function after traumatic injury following maxillofacial surgery: an off label pilot-study. J Cranio-Maxillofac Surg 40:427–434

    Article  Google Scholar 

  • Schmandke A, Schmandke A, Strittmatter SM (2007) ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 13:454–469

    Article  Google Scholar 

  • Schmitt AB, Breuer S, Liman J, Buss A, Schlangen C, Pech K, Hol EM, Brook GA, Noth J, Schwaiger FW (2003) Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat. BMC Neurosci 4:8

    Article  Google Scholar 

  • Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, Mcdonald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG, Inflammation & Host Response to Injury, L. S. C. R. P (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110:3507–3512

    Article  Google Scholar 

  • Sharma N, Coughlin L, Porter RG, Tanzer L, Wurster RD, Marzo SJ, Jones KJ, Foecking EM (2009) Effects of electrical stimulation and gonadal steroids on rat facial nerve regenerative properties. Restor Neurol Neurosci 27:633–644

    Google Scholar 

  • Stefani M, Markus MA, Lin RC, Pinese M, Dawes IW, Morris BJ (2007) The effect of resveratrol on a cell model of human aging. Ann N Y Acad Sci 1114:407–418

    Article  Google Scholar 

  • Stewart HJ, Eccleston PA, Jessen KR, Mirsky R (1991) Interaction between cAMP elevation, identified growth factors, and serum components in regulating Schwann cell growth. J Neurosci Res 30:346–352

    Article  Google Scholar 

  • Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci 16:108

    Article  Google Scholar 

  • Suckling K (2008) Animal research: too much faith in models clouds judgement. Nature 455:460

    Article  Google Scholar 

  • Sulaiman OA, Voda J, Gold BG, Gordon T (2002) Fk506 increases peripheral nerve regeneration after chronic axotomy but not after chronic schwann cell denervation. Exp Neurol 175:127–137

    Article  Google Scholar 

  • Sun HH, Saheb-Al-Zamani M, Yan Y, Hunter DA, Mackinnon SE, Johnson PJ (2012) Geldanamycin accelerated peripheral nerve regeneration in comparison to FK-506 in vivo. Neuroscience 223:114–123

    Article  Google Scholar 

  • Sundem L, Chris Tseng KC, Li H, Ketz J, Noble M, Elfar J (2016) Erythropoietin enhanced recovery after traumatic nerve injury: myelination and localized effects. J Hand Surg Am 41:999–1010

    Article  Google Scholar 

  • Tajdaran K, Shoichet MS, Gordon T, Borschel GH (2015) A novel polymeric drug delivery system for localized and sustained release of tacrolimus (FK506). Biotechnol Bioeng 112:1948–1953

    Article  Google Scholar 

  • Tajdaran K, Chan K, Shoichet MS, Gordon T, Borschel GH (2019) Local delivery of FK506 to injured peripheral nerve enhances axon regeneration after surgical nerve repair in rats. Acta Biomater 96:211–221

    Google Scholar 

  • Tang BL (2003) Inhibitors of neuronal regeneration: mediators and signaling mechanisms. Neurochem Int 42:189–203

    Article  Google Scholar 

  • Tang YD, Zheng XS, Ying TT, Yuan Y, Li ST (2015) Nimodipine-mediated re-myelination after facial nerve crush injury in rats. J Clin Neurosci 22:1661–1668

    Article  Google Scholar 

  • Tedeschi A (2011) Tuning the orchestra: transcriptional pathways controlling axon regeneration. Front Mol Neurosci 4:60

    Google Scholar 

  • Tetzlaff J, Tanzer L, Jones KJ (2007) Exogenous androgen treatment delays the stress response following hamster facial nerve injury. J Neuroendocrinol 19:383–389

    Article  Google Scholar 

  • Tos P, Ronchi G, Papalia I, Sallen V, Legagneux J, Geuna S, Giacobini-Robecchi MG (2009) Chapter 4: methods and protocols in peripheral nerve regeneration experimental research: part I-experimental models. Int Rev Neurobiol 87:47–79

    Article  Google Scholar 

  • Tseng KC, Li H, Clark A, Sundem L, Zuscik M, Noble M, Elfar J (2016) 4-Aminopyridine promotes functional recovery and remyelination in acute peripheral nerve injury. EMBO Mol Med 8:1409–1420

    Article  Google Scholar 

  • Udina E, Ladak A, Furey M, Brushart T, Tyreman N, Gordon T (2010) Rolipram-induced elevation of cAMP or chondroitinase ABC breakdown of inhibitory proteoglycans in the extracellular matrix promotes peripheral nerve regeneration. Exp Neurol 223:143–152

    Article  Google Scholar 

  • Van De Velde S, Van Bergen T, Sijnave D, Hollanders K, Castermans K, Defert O, Leysen D, Vandewalle E, Moons L, Stalmans I (2014) AMA0076, a novel, locally acting Rho kinase inhibitor, potently lowers intraocular pressure in New Zealand white rabbits with minimal hyperemia. Invest Ophthalmol Vis Sci 55:1006–1016

    Article  Google Scholar 

  • Varejao AS, Cabrita AM, Meek MF, Bulas-Cruz J, Melo-Pinto P, Raimondo S, Geuna S, Giacobini-Robecchi MG (2004) Functional and morphological assessment of a standardized rat sciatic nerve crush injury with a non-serrated clamp. J Neurotrauma 21:1652–1670

    Article  Google Scholar 

  • Wakino S, Hayashi K, Kanda T, Tatematsu S, Homma K, Yoshioka K, Takamatsu I, Saruta T (2004) Peroxisome proliferator-activated receptor gamma ligands inhibit Rho/Rho kinase pathway by inducing protein tyrosine phosphatase SHP-2. Circ Res 95:e45–e55

    Article  Google Scholar 

  • Wang L, Yuan D, Zhang D, Zhang W, Liu C, Cheng H, Song Y, Tan Q (2015) Ginsenoside re promotes nerve regeneration by facilitating the proliferation, differentiation and migration of Schwann cells via the ERK- and JNK-dependent pathway in rat model of sciatic nerve crush injury. Cell Mol Neurobiol 35:827–840

    Article  Google Scholar 

  • Welin D, Novikova LN, Wiberg M, Kellerth JO, Novikov LN (2009) Effects of N-acetyl-cysteine on the survival and regeneration of sural sensory neurons in adult rats. Brain Res 1287:58–66

    Article  Google Scholar 

  • Wilson AD, Hart A, Brannstrom T, Wiberg M, Terenghi G (2003) Primary sensory neuronal rescue with systemic acetyl-L-carnitine following peripheral axotomy. A dose-response analysis. Br J Plast Surg 56:732–739

    Article  Google Scholar 

  • Wilson AD, Hart A, Brannstrom T, Wiberg M, Terenghi G (2007) Delayed acetyl-L-carnitine administration and its effect on sensory neuronal rescue after peripheral nerve injury. J Plast Reconstr Aesthet Surg 60:114–118

    Article  Google Scholar 

  • Wilson AD, Hart A, Wiberg M, Terenghi G (2010) Acetyl-l-carnitine increases nerve regeneration and target organ reinnervation – a morphological study. J Plast Reconstr Aesthet Surg 63:1186–1195

    Article  Google Scholar 

  • Wood MD, Mackinnon SE (2015) Pathways regulating modality-specific axonal regeneration in peripheral nerve. Exp Neurol 265:171–175

    Article  Google Scholar 

  • Xiao WD, Yu AX, Liu DL (2014) Fasudil hydrochloride could promote axonal growth through inhibiting the activity of ROCK. Int J Clin Exp Pathol 7:5564–5568

    Google Scholar 

  • Yan CY, Greene LA (1998) Prevention of PC12 cell death by N-acetylcysteine requires activation of the Ras pathway. J Neurosci 18:4042–4049

    Article  Google Scholar 

  • Yan Y, Sun HH, Hunter DA, Mackinnon SE, Johnson PJ (2012) Efficacy of short-term FK506 administration on accelerating nerve regeneration. Neurorehabil Neural Repair 26:570–580

    Article  Google Scholar 

  • Yang WW, Pierstorff E (2012) Reservoir-based polymer drug delivery systems. J Lab Autom 17:50–58

    Article  Google Scholar 

  • Yin ZS, Zhang H, Bo W, Gao W (2010) Erythropoietin promotes functional recovery and enhances nerve regeneration after peripheral nerve injury in rats. AJNR Am J Neuroradiol 31:509–515

    Article  Google Scholar 

  • Yuan H, Zhang J, Liu H, Li Z (2013) The protective effects of resveratrol on Schwann cells with toxicity induced by ethanol in vitro. Neurochem Int 63:146–153

    Article  Google Scholar 

  • Zanon RG, Cartarozzi LP, Victorio SC, Moraes JC, Morari J, Velloso LA, Oliveira AL (2010) Interferon (IFN) beta treatment induces major histocompatibility complex (MHC) class I expression in the spinal cord and enhances axonal growth and motor function recovery following sciatic nerve crush in mice. Neuropathol Appl Neurobiol 36:515–534

    Article  Google Scholar 

  • Zhang CG, Welin D, Novikov L, Kellerth JO, Wiberg M, Hart AM (2005) Motorneuron protection by N-acetyl-cysteine after ventral root avulsion and ventral rhizotomy. Br J Plast Surg 58:765–773

    Article  Google Scholar 

  • Zuo J, Neubauer D, Graham J, Krekoski CA, Ferguson TA, Muir D (2002) Regeneration of axons after nerve transection repair is enhanced by degradation of chondroitin sulfate proteoglycan. Exp Neurol 176:221–228

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. D. Rayner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rayner, M.L.D., Healy, J., Phillips, J.B. (2020). Drug Therapies for Peripheral Nerve Injuries. In: Phillips, J., Hercher, D., Hausner, T. (eds) Peripheral Nerve Tissue Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-06217-0_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06217-0_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06217-0

  • Online ISBN: 978-3-030-06217-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics