Skip to main content

Basic Nerve Histology and Histological Analyses Following Peripheral Nerve Repair and Regeneration

  • Living reference work entry
  • First Online:
Peripheral Nerve Tissue Engineering and Regeneration

Abstract

In peripheral nerve studies, histological analyses represent one of the most widely used and informative quality controls to demonstrate nerve tissue regeneration. These analyses require several technical procedures, and a basic knowledge of nerve histology and regeneration is needed for the correct interpretation of the histological information obtained from the experimental studies. For this reason, the aim of this chapter is to review the basic nerve histology and regeneration, as well as the technical procedures and stainings available for the assessment of nerve tissue regeneration. In this sense, some concepts and technical details of the nerve tissue fixation and processing for light and electron microscopy are comprehensively discussed. In relation to histological staining, they were reviewed according to their application in the assessment of nerve tissue regeneration, stromal remodeling, and host response following nerve repair and regeneration. Finally, the importance and main advantages offered by the quantitative analyses of nerve regeneration, mainly focused on the semithin and ultrastructural analyses, were reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alberti KA, Neufeld CI, Wang J, Xu Q (2016) In vivo peripheral nerve repair using tendon-derived nerve guidance conduits. ACS Biomater Sci Eng 2(6):937–945

    Article  Google Scholar 

  • Allodi I, Udina E, Navarro X (2012) Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 98(1):16–37

    Article  Google Scholar 

  • Arroyo EJ, Scherer SS (2000) On the molecular architecture of myelinated fibers. Histochem Cell Biol 113(1):1–18

    Article  Google Scholar 

  • Belkas JS, Shoichet MS, Midha R (2004) Peripheral nerve regeneration through guidance tubes. Neurol Res 26(2):151–160

    Article  Google Scholar 

  • Bolle L, Maurer B, Janzer RC (1992) A modified Hortega-Globus stain is superior to Bielschowsky and Bodian stains for demonstrating neuritic plaques. Biotech Histochem 67(2):82–87

    Article  Google Scholar 

  • Campbell LK, Thomas JR, Lamps LW, Smoller BR, Folpe AL (2003) Protein gene product 9.5 (PGP 9.5) is not a specific marker of neural and nerve sheath tumors: an immunohistochemical study of 95 mesenchymal neoplasms. Mod Pathol 16(10):963–969

    Article  Google Scholar 

  • Campos F, Bonhome-Espinosa AB, Chato-Astrain J, Sanchez-Porras D, Garcia-Garcia OD, Carmona R, Lopez-Lopez MT, Alaminos M, Carriel V, Rodriguez IA (2020) Evaluation of fibrin-agarose tissue-like hydrogels biocompatibility for tissue engineering applications. Front Bioeng Biotechnol 8:596

    Article  Google Scholar 

  • Campos F, Bonhome-Espinosa AB, Carmona R, Duran JDG, Kuzhir P, Alaminos M, Lopez-Lopez MT, Rodriguez IA, Carriel V (2021) In vivo time-course biocompatibility assessment of biomagnetic nanoparticles-based biomaterials for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 118:111476

    Article  Google Scholar 

  • Cao J, Sun C, Zhao H, Xiao Z, Chen B, Gao J, Zheng T, Wu W, Wu S, Wang J, Dai J (2011) The use of laminin modified linear ordered collagen scaffolds loaded with laminin-binding ciliary neurotrophic factor for sciatic nerve regeneration in rats. Biomaterials 32(16):3939–3948

    Article  Google Scholar 

  • Carnevale G, Pisciotta A, Riccio M, Bertoni L, De Biasi S, Gibellini L, Zordani A, Cavallini GM, La Sala GB, Bruzzesi G, Ferrari A, Cossarizza A, de Pol A (2018) Human dental pulp stem cells expressing STRO-1, c-kit and CD34 markers in peripheral nerve regeneration. J Tissue Eng Regen Med 12(2):e774–e785

    Article  Google Scholar 

  • Carriel V (2019) Métodos y técnicas de estudio en histología, embriología e ingeniería tisular bucodental. Histología, Embriología e Ingeniería Tisular Bucodental. E. Gómes de Ferraris and A. Campos, Editorial Panamericana: 14–36

    Google Scholar 

  • Carriel Araya VS (2017) Preclinical evaluation of bio-artificial conduits developed by tissue engineering for peripheral nerve regeneration Doctoral Thesis, Ghent University (Belgium); University of Granada (Spain)

    Google Scholar 

  • Carriel V, Garzon I, Alaminos M, Campos A (2011a) Evaluation of myelin sheath and collagen reorganization pattern in a model of peripheral nerve regeneration using an integrated histochemical approach. Histochem Cell Biol 136(6):709–717

    Article  Google Scholar 

  • Carriel VS, Aneiros-Fernandez J, Arias-Santiago S, Garzon IJ, Alaminos M, Campos A (2011b) A novel histochemical method for a simultaneous staining of melanin and collagen fibers. J Histochem Cytochem 59(3):270–277

    Article  Google Scholar 

  • Carriel V, Garrido-Gomez J, Hernandez-Cortes P, Garzon I, Garcia-Garcia S, Saez-Moreno JA, Del Carmen Sanchez-Quevedo M, Campos A, Alaminos M (2013) Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. J Neural Eng 10(2):026022

    Article  Google Scholar 

  • Carriel V, Alaminos M, Garzon I, Campos A, Cornelissen M (2014a) Tissue engineering of the peripheral nervous system. Expert Rev Neurother 14(3):301–318

    Article  Google Scholar 

  • Carriel V, Garzon I, Alaminos M, Cornelissen M (2014b) Histological assessment in peripheral nerve tissue engineering. Neural Regen Res 9(18):1657–1660

    Article  Google Scholar 

  • Carriel V, Garzon I, Campos A, Cornelissen M, Alaminos M (2014c) Differential expression of GAP-43 and neurofilament during peripheral nerve regeneration through bio-artificial conduits. J Tissue Eng Regen Med

    Google Scholar 

  • Carriel V, Campos A, Alaminos M, Raimondo S, Geuna S (2017a) Staining methods for Normal and regenerative myelin in the nervous system. Methods Mol Biol 1560:207–218

    Article  Google Scholar 

  • Carriel V, Campos F, Aneiros-Fernandez J, Kiernan JA (2017b) Tissue fixation and processing for the histological identification of lipids. Methods Mol Biol 1560:197–206

    Article  Google Scholar 

  • Carriel V, Scionti G, Campos F, Roda O, Castro B, Cornelissen M, Garzon I, Alaminos M (2017c) In vitro characterization of a nanostructured fibrin agarose bio-artificial nerve substitute. J Tissue Eng Regen Med 11(5):1412–1426

    Article  Google Scholar 

  • Chacon MR, Navarro AI, Cuesto G, del Pino I, Scott R, Morales M, Rico B (2012) Focal adhesion kinase regulates actin nucleation and neuronal filopodia formation during axonal growth. Development 139(17):3200–3210

    Article  Google Scholar 

  • Chato-Astrain J, Campos F, Roda O, Miralles E, Durand-Herrera D, Saez-Moreno JA, Garcia-Garcia S, Alaminos M, Campos A, Carriel V (2018) In vivo evaluation of nanostructured fibrin-agarose hydrogels with mesenchymal stem cells for peripheral nerve repair. Front Cell Neurosci 12:501

    Article  Google Scholar 

  • Chato-Astrain J, Philips C, Campos F, Durand-Herrera D, Garcia-Garcia OD, Roosens A, Alaminos M, Campos A, Carriel V (2020) Detergent-based decellularized peripheral nerve allografts: an in vivo preclinical study in the rat sciatic nerve injury model. J Tissue Eng Regen Med 14(6):789–806

    Article  Google Scholar 

  • Chen P, Cescon M, Bonaldo P (2015a) The role of collagens in peripheral nerve myelination and function. Mol Neurobiol 52(1):216–225

    Article  Google Scholar 

  • Chen P, Piao X, Bonaldo P (2015b) Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol 130(5):605–618

    Article  Google Scholar 

  • Chernousov MA, Yu WM, Chen ZL, Carey DJ, Strickland S (2008) Regulation of Schwann cell function by the extracellular matrix. Glia 56(14):1498–1507

    Article  Google Scholar 

  • Cho DI, Kim MR, Jeong HY, Jeong HC, Jeong MH, Yoon SH, Kim YS, Ahn Y (2014) Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 46:e70

    Article  Google Scholar 

  • Cook DJ, Warren PJ (2015) Cellular pathology: introduction to techniques and applications. Scion, Bloxham

    Google Scholar 

  • Cui Y, Yao Y, Zhao Y, Xiao Z, Cao Z, Han S, Li X, Huan Y, Pan J, Dai J (2018) Functional collagen conduits combined with human mesenchymal stem cells promote regeneration after sciatic nerve transection in dogs. J Tissue Eng Regen Med 12(5):1285–1296

    Article  Google Scholar 

  • de Ruiter GC, Spinner RJ, Verhaagen J, Malessy MJ (2014) Misdirection and guidance of regenerating axons after experimental nerve injury and repair. J Neurosurg 120(2):493–501

    Article  Google Scholar 

  • Deprez M, Ceuterick-de Groote C, Fumal A, Reznik M, Martin JJ (1999) A new combined bodian-luxol technique for staining unmyelinated axons in semithin, resin-embedded peripheral nerves: a comparison with electron microscopy. Acta Neuropathol 98(4):323–329

    Article  Google Scholar 

  • Di Scipio F, Raimondo S, Tos P, Geuna S (2008) A simple protocol for paraffin-embedded myelin sheath staining with osmium tetroxide for light microscope observation. Microsc Res Tech 71(7):497–502

    Article  Google Scholar 

  • Dietzmeyer N, Huang Z, Schuning T, Rochkind S, Almog M, Nevo Z, Lieke T, Kankowski S, Haastert-Talini K (2020) In vivo and in vitro evaluation of a novel hyaluronic acid-laminin hydrogel as luminal filler and Carrier system for genetically engineered Schwann cells in critical gap length tubular peripheral nerve graft in rats. Cell Transplant 29:963689720910095

    Article  Google Scholar 

  • Ducommun Priest M, Navarro MF, Bremer J, Granato M (2019) Dynein promotes sustained axonal growth and Schwann cell remodeling early during peripheral nerve regeneration. PLoS Genet 15(2):e1007982

    Article  Google Scholar 

  • El Soury M, Gambarotta G (2019) Soluble neuregulin-1 (NRG1): a factor promoting peripheral nerve regeneration by affecting Schwann cell activity immediately after injury. Neural Regen Res 14(8):1374–1375

    Article  Google Scholar 

  • El Soury M, García-García ÓD, Moretti M, Perroteau I, Raimondo S, Lovati AB, Carriel V (2021) Comparison of decellularization protocols to generate peripheral nerve grafts: A study on rat sciatic nerves. Int J Mol Sci. 2021 Feb 27;22(5):2389

    Google Scholar 

  • Evaristo-Mendonca F, Carrier-Ruiz A, de Siqueira-Santos R, Campos RMP, Rangel B, Kasai-Brunswick TH, Ribeiro-Resende VT (2018) Dual contribution of mesenchymal stem cells employed for tissue engineering of peripheral nerves: trophic activity and differentiation into connective-tissue cells. Stem Cell Rev Rep 14(2):200–212

    Article  Google Scholar 

  • Farber SJ, Hoben GM, Hunter DA, Yan Y, Johnson PJ, Mackinnon SE, Wood MD (2016) Vascularization is delayed in long nerve constructs compared with nerve grafts. Muscle Nerve 54(2):319–321

    Article  Google Scholar 

  • Fawcett DW, Jensh RP (1997) Bloom & Fawcett: concise histology. Chapman and Hall: International Thomson Pub, New York

    Google Scholar 

  • Fernandez R, Carriel V, Lage S, Garate J, Diez-Garcia J, Ochoa B, Castro B, Alaminos M, Fernandez JA (2016) Deciphering the lipid architecture of the rat sciatic nerve using imaging mass spectrometry. ACS Chem Neurosci 7(5):624–632

    Article  Google Scholar 

  • Fertala J, Rivlin M, Wang ML, Beredjiklian PK, Steplewski A, Fertala A (2020) Collagen-rich deposit formation in the sciatic nerve after injury and surgical repair: a study of collagen-producing cells in a rabbit model. Brain Behav 10(10):e01802

    Article  Google Scholar 

  • Fornaro M, Lee JM, Raimondo S, Nicolino S, Geuna S, Giacobini-Robecchi M (2008) Neuronal intermediate filament expression in rat dorsal root ganglia sensory neurons: an in vivo and in vitro study. Neuroscience 153(4):1153–1163

    Article  Google Scholar 

  • Frost HK, Andersson T, Johansson S, Englund-Johansson U, Ekstrom P, Dahlin LB, Johansson F (2018) Electrospun nerve guide conduits have the potential to bridge peripheral nerve injuries in vivo. Sci Rep 8(1):16716

    Article  Google Scholar 

  • Gambarotta G, Fregnan F, Gnavi S, Perroteau I (2013) Neuregulin 1 role in Schwann cell regulation and potential applications to promote peripheral nerve regeneration. Int Rev Neurobiol 108:223–256

    Article  Google Scholar 

  • Gambarotta G, Raimondo S, Udina E, Phillips JB, Haastert-Talini K (2019) Editorial: peripheral nerve regeneration. Front Cell Neurosci 13:464

    Article  Google Scholar 

  • Garcia-Garcia OD, El Soury M, Gonzalez-Quevedo D, Sanchez-Porras D, Chato-Astrain J, Campos F, Carriel V (2021) Histological, biomechanical, and biological properties of Genipin-crosslinked Decellularized peripheral nerves. Int J Mol Sci 22(2)

    Google Scholar 

  • Garcia-Martinez L, Campos F, Godoy-Guzman C, Del Carmen Sanchez-Quevedo M, Garzon I, Alaminos M, Campos A, Carriel V (2017) Encapsulation of human elastic cartilage-derived chondrocytes in nanostructured fibrin-agarose hydrogels. Histochem Cell Biol 147(1):83–95

    Article  Google Scholar 

  • Gartner LP (2017) Textbook of histology. Elsevier, Philadelphia

    Google Scholar 

  • Georgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB (2015) Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials 37:242–251

    Article  Google Scholar 

  • Geuna S (2015) The sciatic nerve injury model in pre-clinical research. J Neurosci Methods 243:39–46

    Article  Google Scholar 

  • Geuna S, Raimondo S, Ronchi G, Di Scipio F, Tos P, Czaja K, Fornaro M (2009) Chapter 3: histology of the peripheral nerve and changes occurring during nerve regeneration. Int Rev Neurobiol 87:27–46

    Article  Google Scholar 

  • Giorgadze T, Rukhadze R, Giorgadze S, Gujabidze N, Tevzadze N (2010) Quantitative changes of schwann and mast cells in the process of peripheral nerve regeneration. Georgian Med News (188):84–88

    Google Scholar 

  • Godoy-Guzman C, Nunez C, Orihuela P, Campos A, Carriel V (2018) Distribution of extracellular matrix molecules in human uterine tubes during the menstrual cycle: a histological and immunohistochemical analysis. J Anat 233(1):73–85

    Article  Google Scholar 

  • Gonzalez-Martinez T, Perez-Pinera P, Diaz-Esnal B, Vega JA (2003) S-100 proteins in the human peripheral nervous system. Microsc Res Tech 60(6):633–638

    Article  Google Scholar 

  • Gonzalez-Perez F, Udina E, Navarro X (2013) Extracellular matrix components in peripheral nerve regeneration. Int Rev Neurobiol 108:257–275

    Article  Google Scholar 

  • Gordon T (2009) The role of neurotrophic factors in nerve regeneration. Neurosurg Focus 26(2):E3

    Article  Google Scholar 

  • Griffin JW, Thompson WJ (2008) Biology and pathology of nonmyelinating Schwann cells. Glia 56(14):1518–1531

    Article  Google Scholar 

  • Hernandez-Cortes P, Garrido J, Camara M, Ravassa FO (2010) Failed digital nerve reconstruction by foreign body reaction to Neurolac nerve conduit. Microsurgery 30(5):414–416

    Article  Google Scholar 

  • Hernandez-Cortes P, Toledo-Romero MA, Delgado M, Sanchez-Gonzalez CE, Martin F, Galindo-Moreno P, O’Valle F (2014) Peripheral nerve reconstruction with epsilon-caprolactone conduits seeded with vasoactive intestinal peptide gene-transfected mesenchymal stem cells in a rat model. J Neural Eng 11(4):046024

    Article  Google Scholar 

  • Hightower M, Gross GW (1985) A combined Bodian-Nissl stain for improved network analysis in neuronal cell culture. Stain Technol 60(6):315–320

    Article  Google Scholar 

  • Hol EM, Capetanaki Y (2017) Type III intermediate filaments Desmin, glial fibrillary acidic protein (GFAP), vimentin, and Peripherin. Cold Spring Harb Perspect Biol 9(12)

    Google Scholar 

  • Huang CW, Huang WC, Qiu X, da Silva FFF, Wang A, Patel S, Nesti LJ, Poo MM, Li S (2017) The differentiation stage of transplanted stem cells modulates nerve regeneration. Sci Rep 7(1):17401

    Article  Google Scholar 

  • Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55

    Article  Google Scholar 

  • Junqueira LCU, Carneiro J (2005) Basic histology: text & atlas. McGraw-Hill Medical, New York

    Book  Google Scholar 

  • Kevenaar JT, Hoogenraad CC (2015) The axonal cytoskeleton: from organization to function. Front Mol Neurosci 8:44

    Article  Google Scholar 

  • Kiernan JA (2007) Histochemistry of staining methods for normal and degenerating myelin in the central and peripheral nervous systems. J Histotechnol 30(2):87–106

    Article  Google Scholar 

  • Kiernan JA (2008) Histological and histochemical methods: theory and practice. Scion, Bloxham

    Google Scholar 

  • Kierszenbaum AL (2019) Histology and cell biology : an introduction to pathology. St. Louis, Elsevier Inc

    Google Scholar 

  • Kierszenbaum AL, Tres LL (2016) Histology and cell biology: an introduction to pathology. Elsevier, Philadelphia

    Google Scholar 

  • Kluver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12(4):400–403

    Article  Google Scholar 

  • Korshunova I, Mosevitsky M (2010) Role of the growth-associated protein GAP-43 in NCAM-mediated neurite outgrowth. Adv Exp Med Biol 663:169–182

    Article  Google Scholar 

  • Leiva-Cepas F, Ruz-Caracuel I, Peña-Toledo MA, Agüera-Vega A, Jimena I, Luque E, Peña J (2018) Metodología de laboratorio para el estudio histológico del músculo esquelético. Arch Med Deporte:254–262

    Google Scholar 

  • Leiva-Cepas F, Jimena I, Ruz-Caracuel I, Luque E, Villalba R, Pena-Amaro J (2020) Histology of skeletal muscle reconstructed by means of the implantation of autologous adipose tissue: an experimental study. Histol Histopathol 35(5):457–474

    Google Scholar 

  • Lovati AB, D’Arrigo D, Odella S, Tos P, Geuna S, Raimondo S (2018) Nerve repair using decellularized nerve grafts in rat models. A review of the literature. Front Cell Neurosci 12:427

    Article  Google Scholar 

  • Lundborg G (2004) Nerve injury and repair. In: Regeneration, reconstruction and cortical re-modelling. Elsevier, Philadelphia

    Google Scholar 

  • Marettová E (2016) Expression of cytokeratin 18 in the peripheral nerves. Folia Vet 60(2):5–10

    Article  Google Scholar 

  • Martín-Lacave I, García Caballero T (2012) Atlas de inmunohistoquimica [ caracterización de células, tejidos y órganos normales. Madrid, Ediciones Díaz de Santos,: 1 online resource (413 páginas)

    Google Scholar 

  • Meier C, Dermietzel R, Davidson KG, Yasumura T, Rash JE (2004) Connexin32-containing gap junctions in Schwann cells at the internodal zone of partial myelin compaction and in Schmidt-Lanterman incisures. J Neurosci 24(13):3186–3198

    Article  Google Scholar 

  • Meier-Ruge WA, Bruder E (2005) Pathology of chronic constipation in pediatric and adult coloproctology. Pathobiology 72(1–2):1–102

    Google Scholar 

  • Mescher A (2018) Junqueira’s basic histology: text and atlas, 15th edn. McGraw-Hill Education

    Google Scholar 

  • Mikos AG, McIntire LV, Anderson JM, Babensee JE (1998) Host response to tissue engineered devices. Adv Drug Deliv Rev 33(1–2):111–139

    Google Scholar 

  • Mills SE (2007) Histology for pathologists. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Mills SE (2012) Histology for pathologists (Stacey E. Mills, ed). Philadelphia, Lippincott Williams & Wilkins

    Google Scholar 

  • Mohan S, Coto Hernandez I, Selig MK, Shibata S, Jowett N (2019) Stain-free resolution of unmyelinated axons in transgenic mice using fluorescence microscopy. J Neuropathol Exp Neurol 78(12):1178–1180

    Article  Google Scholar 

  • Mortimer D, Fothergill T, Pujic Z, Richards LJ, Goodhill GJ (2008) Growth cone chemotaxis. Trends Neurosci 31(2):90–98

    Article  Google Scholar 

  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20

    Article  Google Scholar 

  • Navarro X (2009) Chapter 27: neural plasticity after nerve injury and regeneration. Int Rev Neurobiol 87:483–505

    Article  Google Scholar 

  • Nesbitt JA, Acland RD (1980) Histopathological changes following removal of the perineurium. J Neurosurg 53(2):233–238

    Article  Google Scholar 

  • Oh SJ (2002) Color atlas of nerve biopsy pathology. CRC, Boca Raton

    Google Scholar 

  • Pavelka M, Roth J (2010) Functional ultrastructure: atlas of tissue biology and pathology. SpringerWein, New York

    Book  Google Scholar 

  • Peltonen S, Alanne M, Peltonen J (2013) Barriers of the peripheral nerve. Tissue Barriers 1(3):e24956

    Article  Google Scholar 

  • Philips C, Campos F, Roosens A, Sanchez-Quevedo MDC, Declercq H, Carriel V (2018a) Qualitative and quantitative evaluation of a novel detergent-based method for decellularization of peripheral nerves. Ann Biomed Eng 46(11):1921–1937

    Article  Google Scholar 

  • Philips C, Cornelissen M, Carriel V (2018b) Evaluation methods as quality control in the generation of decellularized peripheral nerve allografts. J Neural Eng 15(2):021003

    Article  Google Scholar 

  • Pina-Oviedo S, Del Valle L, Baquera-Heredia J, Ortiz-Hidalgo C (2009) Immunohistochemical characterization of Renaut bodies in superficial digital nerves: further evidence supporting their perineurial cell origin. J Peripher Nerv Syst 14(1):22–26

    Article  Google Scholar 

  • Prophet EB (1992) Laboratory methods in histotechnology, Amer Registry of Pathology

    Google Scholar 

  • Qiao W, Lu L, Wu G, An X, Li D, Guo J (2019) DPSCs seeded in acellular nerve grafts processed by Myroilysin improve nerve regeneration. J Biomater Appl 33(6):819–833

    Article  Google Scholar 

  • Qin J, Zha GB, Yu J, Zhang HH, Yi S (2016) Differential temporal expression of matrix metalloproteinases following sciatic nerve crush. Neural Regen Res 11(7):1165–1171

    Article  Google Scholar 

  • Raimondo S, Nicolino S, Tos P, Battiston B, Giacobini-Robecchi MG, Perroteau I, Geuna S (2005) Schwann cell behavior after nerve repair by means of tissue-engineered muscle-vein combined guides. J Comp Neurol 489(2):249–259

    Article  Google Scholar 

  • Raimondo S, Fornaro M, Di Scipio F, Ronchi G, Giacobini-Robecchi MG, Geuna S (2009) Methods and protocols in peripheral nerve regeneration experimental research: part II—morphological techniques. Int Rev Neurobiol 87:81–103

    Article  Google Scholar 

  • Ramón y Cajal S, May RM, National Institute on Drug Abuse and Addiction Research Center (U.S.) (1959) Degeneration & regeneration of the nervous system. Hafner Pub, New York

    Google Scholar 

  • Rodriguez FJ, Folpe AL, Giannini C, Perry A (2012) Pathology of peripheral nerve sheath tumors: diagnostic overview and update on selected diagnostic problems. Acta Neuropathol 123(3):295–319

    Article  Google Scholar 

  • Ronchi G, Jager SB, Vaegter CB, Raimondo S, Giacobini-Robecchi MG, Geuna S (2014) Discrepancies in quantitative assessment of normal and regenerated peripheral nerve fibers between light and electron microscopy. J Peripher Nerv Syst 19(3):224–233

    Article  Google Scholar 

  • Ronchi G, Gambarotta G, Morano M, Fregnan F, Pugliese P, Tos P, Geuna S, Haastert-Talini K (2020) Critical analysis of the value of the rabbit median nerve model for biomedical research on peripheral nerve grafts. J Tissue Eng Regen Med 14(5):736–740

    Article  Google Scholar 

  • Rotshenker S (2011) Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 8:109

    Article  Google Scholar 

  • Sanen K, Martens W, Georgiou M, Ameloot M, Lambrichts I, Phillips J (2017) Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair? J Tissue Eng Regen Med 11(12):3362–3372

    Article  Google Scholar 

  • Schaakxs D, Kalbermatten DF, Pralong E, Raffoul W, Wiberg M, Kingham PJ (2017) Poly-3-hydroxybutyrate strips seeded with regenerative cells are effective promoters of peripheral nerve repair. J Tissue Eng Regen Med 11(3):812–821

    Article  Google Scholar 

  • Spiegel I, Peles E (2002) Cellular junctions of myelinated nerves (review). Mol Membr Biol 19(2):95–101

    Article  Google Scholar 

  • Stocum DL (2006) Regenerative biology and medicine. Elsevier Academic Press, Amsterdam/Boston

    Book  Google Scholar 

  • Sun Q, Tu H, Xing GG, Han JS, Wan Y (2005) Ectopic discharges from injured nerve fibers are highly correlated with tactile allodynia only in early, but not late, stage in rats with spinal nerve ligation. Exp Neurol 191(1):128–136

    Article  Google Scholar 

  • Sun X, Zhu Y, Yin HY, Guo ZY, Xu F, Xiao B, Jiang WL, Guo WM, Meng HY, Lu SB, Wang Y, Peng J (2018) Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: potential advantage of cellular transient memory function. Stem Cell Res Ther 9(1):133

    Article  Google Scholar 

  • Thorsen F, Rosberg HE, Steen Carlsson K, Dahlin LB (2012) Digital nerve injuries: epidemiology, results, costs, and impact on daily life. J Plast Surg Hand Surg 46(3–4):184–190

    Article  Google Scholar 

  • Topp KS, Boyd BS (2006) Structure and biomechanics of peripheral nerves: nerve responses to physical stresses and implications for physical therapist practice. Phys Ther 86(1):92–109

    Article  Google Scholar 

  • Tos P, Crosio A, Pellegatta I, Valdatta L, Pascal D, Geuna S, Cherubino M (2016) Efficacy of anti-adhesion gel of carboxymethylcellulose with polyethylene oxide on peripheral nerve: experimental results on a mouse model. Muscle Nerve 53(2):304–309

    Article  Google Scholar 

  • Ubogu EE (2013) The molecular and biophysical characterization of the human blood-nerve barrier: current concepts. J Vasc Res 50(4):289–303

    Article  Google Scholar 

  • Ushiki T (2002) Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch Histol Cytol 65(2):109–126

    Article  Google Scholar 

  • Vela-Romera A, Carriel V, Martin-Piedra MA, Aneiros-Fernandez J, Campos F, Chato-Astrain J, Prados-Olleta N, Campos A, Alaminos M, Garzon I (2019) Characterization of the human ridged and non-ridged skin: a comprehensive histological, histochemical and immunohistochemical analysis. Histochem Cell Biol 151(1):57–73

    Article  Google Scholar 

  • Vleggeert-Lankamp CL (2007) The role of evaluation methods in the assessment of peripheral nerve regeneration through synthetic conduits: a systematic review. Laboratory investigation. J Neurosurg 107(6):1168–1189

    Article  Google Scholar 

  • Welsch U, Sobotta J (2008) Histología. Editorial Médica Panamericana, Madrid

    Google Scholar 

  • Welsch U, Sobotta J, Negrete JH (2009) Sobotta Welsch histología. Editorial Médica Panamericana, Madrid

    Google Scholar 

  • Weng YL, Wang X, An R, Cassin J, Vissers C, Liu Y, Liu Y, Xu T, Wang X, Wong SZH, Joseph J, Dore LC, Dong Q, Zheng W, Jin P, Wu H, Shen B, Zhuang X, He C, Liu K, Song H, Ming GL (2018) Epitranscriptomic m(6)a regulation of axon regeneration in the adult mammalian nervous system. Neuron 97(2):313–325.e316

    Article  Google Scholar 

  • Yuste R (2015) From the neuron doctrine to neural networks. Nat Rev Neurosci 16(8):487–497

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Spanish “Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Ministerio de Economía y Competitividad (Instituto de Salud Carlos III),” Grants N° FIS PI17-0393, FIS PI20-0318 co-financed by the “Fondo Europeo de Desarrollo Regional ERDF-FEDER European Union”; Grant N° P18-RT-5059 by “Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020), Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, España”; Grant N° A-CTS-498-UGR18 by “Programa Operativo FEDER Andalucía 2014-2020, Universidad de Granada, Junta de Andalucía, España,” co-funded by ERDF-FEDER, the European Union; and Grant Nº INTRAIBS-2020-08 from Instituto de Investigación Biosanitaria ibs.GRANADA. The authors are grateful to Prof. Dr. Ariane Ruyffelaert (University of Granada) for her proofreading service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Carriel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chato-Astrain, J., García-García, Ó.D., Campos, F., Sánchez-Porras, D., Carriel, V. (2021). Basic Nerve Histology and Histological Analyses Following Peripheral Nerve Repair and Regeneration. In: Phillips, J., Hercher, D., Hausner, T. (eds) Peripheral Nerve Tissue Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-06217-0_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06217-0_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06217-0

  • Online ISBN: 978-3-030-06217-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics