Skip to main content

Bioactive Phytochemicals of Cape Gooseberry (Physalis peruviana L.)

  • Living reference work entry
  • First Online:
Bioactive Compounds in Underutilized Fruits and Nuts

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Cape gooseberry (Physalis peruviana L.), also known as goldenberry, is rich in phytochemicals with potential health-promoting impacts. The diversity of novel products obtained from P. peruviana makes this plant of great commercial importance. P. peruviana has been the subject of scientific and commercial interest. P. peruviana is used in different food products including yogurt, beverages, and jams. This chapter summarizes the recent knowledge on active phytoconstituents and the development of P. peruviana products including novel foodstuffs and nutraceutical and pharmaceutical formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

1-MCP:

1-Ethylcyclopropene

4HWE:

4-Hydroxywithanolide E

ADR :

Adriamycin

BALF:

Bronchoalveolar lavage fluid

CCl4:

Carbon tetrachloride

DHGLA:

Dihomo-γ-linolenic

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

GAE:

Gallic acid equivalent

GLA:

γ-Linolenic acid

HCC :

Hepatocellular carcinoma

HMF:

Hydroxymethylfurfural

HPLC:

High-performance liquid chromatography

iNOS:

Inducible nitric oxide synthase

MAG:

Mono-acylglycerols

NMR:

Nuclear magnetic resonance

OVA:

Ovalbumin

PhytoPs:

Phytoprostanes

PO:

Pulp/peel oil

PUFA:

Polyunsaturated fatty acids

SFE-CO2:

Supercritical carbon dioxide

SO:

Seed oil

TAG:

Triacylglycerols

TDDFT:

Time-dependent density functional theory

UHPLC-QqQ-MS/MS:

Ultrahigh performance liquid chromatography triple quadrupole tandem mass spectrometry

WBO:

Whole berry oil

References

  1. Zhao Y (2007) In: Zhao Y (ed) Berry fruit, value-added products for health promotion. CRC Press, Boca Raton. ISBN-10: 0-8493-5802-7

    Chapter  Google Scholar 

  2. Nitcheu Ngemakwe PH, Remize F, Thaoge ML, Sivakumar D (2017) Phytochemical and nutritional properties of underutilised fruits in the southern African region. S Afr J Bot 113:137–149

    Article  CAS  Google Scholar 

  3. Maruenda H, Cabrera R, Canari-Chumpitaz C, Lopez JM, Toubiana D (2018) NMR-based metabolic study of fruits of Physalis peruviana L. grown in eight different Peruvian ecosystems. Food Chem 262:94–101

    Article  CAS  PubMed  Google Scholar 

  4. Llano SM, Munoz-Jimenez AM, Jimenez-Cartagena C, Londono-Londono J, Medina S (2018) Untargeted metabolomics reveals specific withanolides and fatty acyl glycoside as tentative metabolites to differentiate organic and conventional Physalis peruviana fruits. Food Chem 244:120–127

    Article  CAS  PubMed  Google Scholar 

  5. Embaby HE-S, Mokhtar SM (2019) Impact of adding goldenberry (Physalis peruviana L.) on some quality characteristics and bio-functional properties of pasteurized carrot (Daucus carota L.) nectar. J Food Sci Technol 56(2):966–975

    Article  CAS  PubMed  Google Scholar 

  6. Ramadan MF, Mörsel J-T (2019) Goldenberry (Physalis peruviana) oil. In: Ramadan MF (ed) Fruit oils: chemistry and functionality. Springer International Publishing, Cham, pp 397–404. https://doi.org/10.1007/978-3-030-12473-1_19

    Chapter  Google Scholar 

  7. Ramadan MF (2019) Underutilized plant species and agricultural sustainability in Egypt. In: Negm AM, Abu-Hashim M (eds) Sustainability of agricultural environment in Egypt: part I: soil-water-food nexus. Springer International Publishing, Cham, pp 189–212

    Google Scholar 

  8. Valdenegro M, Fuentes L, Herrera R, Moya-León MA (2012) Changes in antioxidant capacity during development and ripening of goldenberry (Physalis peruviana L.) fruit and in response to 1-methylcyclopropene treatment. Postharvest Biol Technol 67:110–117

    Article  CAS  Google Scholar 

  9. Hassan HA, Serag HM, Qadir MS, Ramadan MF (2017) Cape gooseberry (Physalis peruviana) juice as a modulator agent for hepatocellular carcinoma-linked apoptosis and cell cycle arrest. Biomed Pharmacother 94:1129–1137

    Article  CAS  PubMed  Google Scholar 

  10. Ballesteros-Vivas D, Alvarez-Rivera G, Del Pilar S-CA, Ibanez E, Parada-Alfonso F, Cifuentes A (2019) A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 1: Withanolides-rich fractions from goldenberry (Physalis peruviana L.) calyces obtained after extraction optimization as case study. J Chromatogr A 1584:155–164

    Article  CAS  PubMed  Google Scholar 

  11. Yildiz G, Izli N, Unal H, Uylaser V (2015) Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). J Food Sci Technol 52(4):2320–2327

    Article  CAS  PubMed  Google Scholar 

  12. Popenoe H, King SR, Leon J, Kalinowski LS (1990) Goldenberry (cape gooseberry). In: National Research council (ed) Lost crops of the Incas, little-known plants of the Andes with promise for worldwide cultivation. National Academy Press, Washington, DC, pp 241–252

    Google Scholar 

  13. Mayorga H, Knapp H, Winterhalter P, Duque C (2001) Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.). J Agric Food Chem 49:1904–1908

    Article  CAS  PubMed  Google Scholar 

  14. Ramadan MF, Mörsel J-T (2004) Goldenberry: a novel fruit source of fat soluble bioactives. Inform 15:130–131

    Google Scholar 

  15. Ramadan MF, Mörsel J-T (2007) Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L) juice. J Sci Food Agric 87:452–460

    Article  CAS  Google Scholar 

  16. Hassanien MFR (2011) Physalis peruviana: a rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Rev Int 27:259–273

    Article  CAS  Google Scholar 

  17. Morton JF (1987) Cape Gooseberry. In: Morton JF (ed) Fruits of warm climates. Creative Resource Systems, Winterville, pp 430–434

    Google Scholar 

  18. McCain R (1993) Goldenberry, passionfruit and white sapote: potential fruits for cool subtropical areas. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 479–486

    Google Scholar 

  19. Rehm S, Espig G (1991) Fruit. In: Sigmund R, Gustav E (eds) The cultivated plants of the topics and subtropics, cultivation, economic value, utilization. Verlag Josef Margraf, Weikersheim, pp 169–245

    Google Scholar 

  20. Ramadan MF, Mörsel J-T (2003) Oil goldenberry (Physalis peruviana L.). J Agric Food Chem 51:969–974

    Article  CAS  PubMed  Google Scholar 

  21. Ramadan MF (2011) Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Res Int 44(7):1830–1836

    Article  CAS  Google Scholar 

  22. Etzbach L, Pfeiffer A, Schieber A, Weber F (2019) Effects of thermal pasteurization and ultrasound treatment on the peroxidase activity, carotenoid composition, and physicochemical properties of goldenberry (Physalis peruviana L.) puree. LWT 100:69–74

    Article  CAS  Google Scholar 

  23. Etzbach L, Pfeiffer A, Weber F, Schieber A (2018) Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chem 245:508–517

    Article  CAS  PubMed  Google Scholar 

  24. Ordóñez-Santos LE, Martínez-Girón J, Arias-Jaramillo ME (2017) Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in cape gooseberry juice. Food Chem 233:96–100

    Article  PubMed  Google Scholar 

  25. Mayorga H, Duque C, Knapp H, Winterhalter P (2002) Hydroxyester disaccharides from fruits of cape gooseberry (Physalis peruviana). Phytochemistry 59:439–445

    Article  CAS  PubMed  Google Scholar 

  26. Medina S, Collado-González J, Ferreres F, Londoño-Londoño J, Jiménez-Cartagena C, Guy A, Durand T, Galano J, Gil-Izquierdo Á (2019) Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. J Sci Food Agric 99:2194–2204

    Article  CAS  PubMed  Google Scholar 

  27. del Carmen Morales Saavedra J, Rodríguez Zaragoza FA, Cabrera Toledo D, Sánchez Hernández CV, Vargas-Ponce O (2019) Agromorphological characterization of wild and weedy populations of Physalis angulata in Mexico. Sci Hortic 246:86–94

    Article  Google Scholar 

  28. Bravo K, Sepulveda-Ortega S, Lara-Guzman O, Navas-Arboleda AA, Osorio E (2015) Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in cape gooseberry (Physalis peruviana L.). J Sci Food Agric 95:1562–1569

    Article  CAS  PubMed  Google Scholar 

  29. Olivares-Tenorio M-L, Dekker M, Verkerk R, van Boekel MAJS (2016) Health-promoting compounds in cape gooseberry (Physalis peruviana L.): review from a supply chain perspective. Trends Food Sci Technol 57:83–92

    Article  CAS  Google Scholar 

  30. Mokhtar SM, Swailam HM, Embaby HE (2018) Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: composition of goldenberry juice waste. Food Chem 248:1–7

    Article  CAS  PubMed  Google Scholar 

  31. Mubarok S, Dahlania S, Suwali N (2019) Dataset on the change of postharvest quality of Physalis peruviana L. as an effect of ethylene inhibitor. Data Brief 24:103849

    Article  PubMed  PubMed Central  Google Scholar 

  32. Belitz HD, Grosch W (1999) Food chemistry. Springer, Berlin

    Book  Google Scholar 

  33. Ramadan MF, Mörsel J-T (2009) Oil extractability from enzymatically-treated goldenberry (Physalis peruviana L) pomace: range of operational variables. Int J Food Sci Technol 44:435–444

    Article  CAS  Google Scholar 

  34. Ramadan MF, Sitohy MZ, Mörsel J-T (2008) Solvent and enzyme-aided aqueous extraction of goldenberry (Physalis peruviana L) pomace oil: impact of processing on composition and quality of oil and meal. Euro Food Res Technol 226:1445–1458

    Article  CAS  Google Scholar 

  35. Ramadan MF (2019) Enzymes in fruit juice processing. In: Kuddus M (ed) Enzymes in food biotechnology. Academic Press, London, pp 45–59. ISBN 9780128132807

    Chapter  Google Scholar 

  36. Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Riitta AT (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47:2274–2279

    Article  PubMed  Google Scholar 

  37. Dag D, Kilercioglu M, Oztop MH (2017) Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT-Food Sci Technol 83:86–94

    Article  CAS  Google Scholar 

  38. Toyosaki T, Sakane Y, Kasai M (2008) Oxidative stability, trans,trans-2,4-decadienals, and tocopherol contents during storage of dough fried in soybean oil with added medium-chain triacylglycerols (MCT). Food Res Int 41:318–324

    Article  CAS  Google Scholar 

  39. Wackerbarth H, Stoll T, Gebken S, Pelters C, Bindrich U (2009) Carotenoid–protein interaction as an approach for the formulation of functional food emulsions. Food Res Int 42:1254–1258

    Article  CAS  Google Scholar 

  40. Glotter E (1991) Withanolides and related ergostane-type steroids. Nat Prod Rep 8:415–440

    Article  CAS  PubMed  Google Scholar 

  41. Ray AB, Gupta M (1994) Withasteroids, a growing group of naturally occurring steroidal lactones. In: Herz W, Kirby GW, Moore RE, Steglich W, Tam C (eds) Progress in the chemistry of organic natural products, vol 63. Springer, New York, pp 1–106

    Google Scholar 

  42. Veleiro AS, Oberti JC, Burton G (2005) Chemistry and bioactivity of withanolides from south American Solanaceae. Stud Nat Prod Chem (Part L) Bioact Natur Prod 32:1019–1052

    Article  CAS  Google Scholar 

  43. Lan Y-H, Chang F-R, Pan M-G, Wu C-C, Wu S-J, Chen S-L, Wang S-S, Wu M-J, Wu Y-C (2009) New cytotoxic withanolides from Physalis peruviana. Food Chem 116:462–469

    Article  CAS  Google Scholar 

  44. Ascher KRS, Nemny NE, Eliyahu M, Kirson I, Abraham A, Glotter E (1980) Insect antifeedant properties of withanolides and related steroids from Solanaceae. Experientia 36:998–999

    Article  CAS  Google Scholar 

  45. Cassady JM (1980) Suffness, M. Terpenoid antitumor agents. In: Cassady JM, Douros JD (eds) Anticancer agents based on natural product models. Academic, New York, pp 201–269

    Google Scholar 

  46. Dinan L, Sarker S, Sik V (1997) 28-Hydroxywithanolide E from Physalis peruviana. Photochem 44:509–5I2

    Article  CAS  Google Scholar 

  47. Dong B, An L, Yang X, Zhang X, Zhang J, Tuerhong M, Jin DQ, Ohizumi Y, Lee D, Xu J, Guo Y (2019) Withanolides from Physalis peruviana showing nitric oxide inhibitory effects and affinities with iNOS. Bioorg Chem 87:585–593

    Article  CAS  PubMed  Google Scholar 

  48. De Rosso VV, Mercadante AZ (2007) Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J Agric Food Chem 55:5062–5072

    Article  PubMed  Google Scholar 

  49. Breithaupt DE, Bamedi A (2001) Carotenoid esters in vegetables and fruits: a screening with emphasis on β-cryptoxanthin esters. J Agric Food Chem 49:2064–2070

    Article  CAS  PubMed  Google Scholar 

  50. Coyne T, Ibiebele TI, Baadr PD, Dobson A, McClintock C, Dunn S, Leonard D, Shaw J (2005) Diabetes mellitus and serum carotenoids: findings of a population-based study in Queensland. Am J Clin Nutr 82:685–693

    Article  CAS  PubMed  Google Scholar 

  51. Fraser ML, Lee AH, Binns CW (2005) Lycopene and prostate cancer: emerging evidence. Expert Rev Anticancer Ther 5:847–854

    Article  CAS  PubMed  Google Scholar 

  52. Olivares-Tenorio M-L, Verkerk R, van Boekel MAJS, Dekker M (2017) Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry (Physalis peruviana L.). J Funct Foods 32:46–57

    Article  CAS  Google Scholar 

  53. Bernal CA, Castellanos L, Aragon DM, Martinez-Matamoros D, Jimenez C, Baena Y, Ramos FA (2018) Peruvioses A to F, sucrose esters from the exudate of Physalis peruviana fruit as alpha-amylase inhibitors. Carbohydr Res 461:4–10

    Article  CAS  PubMed  Google Scholar 

  54. Lotz A, Spangenberg B (2016) New and sensitive TLC method to measure trans-resveratrol in Physalis peruviana. J Liquid Chromatogr Relat Technol 39(5–6):308–311

    Article  CAS  Google Scholar 

  55. Latza S, Ganber D, Berger RG (1996) Carbohydrate esters of cinnamic acid from fruits of Physalis peruviana, Psidium guajava, and Vaccinium vitis-idaea. Phytochemistry 43:481–485

    Article  CAS  Google Scholar 

  56. Kupska M, Jelen HH (2017) In-tube extraction for the determination of the main volatile compounds in Physalis peruviana L. J Sep Sci 40(2):532–541

    Article  CAS  PubMed  Google Scholar 

  57. Wang IK, Lin-Shiau SY, Lin JK (1999) Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaremia HL-60 cells. Eur J Cancer 35:1517–1525

    Article  CAS  PubMed  Google Scholar 

  58. Shearer MJ (1992) Vitamin K metabolism and nutriture. Blood 6:92–104

    Article  CAS  Google Scholar 

  59. Damon M, Zhang NZ, Haytowitz DB, Booth SL (2005) Phylloquinone (vitamin K1) content of vegetables. J Food Comp Anal 18:751–758

    Article  CAS  Google Scholar 

  60. Otles S, Cagindi O (2007) Determination of vitamin K1 content in olive oil, chard and human plasma by RP-HPLC method with UV-Vis detection. Food Chem 100:1220–1222

    Article  CAS  Google Scholar 

  61. Erkkilä AT, Booth SL, Hu FB, Jacques PF, Lichtenstein AH (2007) Phylloquinone intake and risk of cardiovascular diseases in men. Nutr Metabol Cardiol Dis 17:58–62

    Article  Google Scholar 

  62. El-Beltagi HS, Mohamed HI, Safwat G, Gamal M, Megahed BMH (2019) Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanzen 71(2):113–122

    Article  CAS  Google Scholar 

  63. Park EJ, Sang-Ngern M, Chang LC, Pezzuto JM (2016) Induction of cell cycle arrest and apoptosis with downregulation of Hsp90 client proteins and histone modification by 4beta-hydroxywithanolide E isolated from Physalis peruviana. Mol Nutr Food Res 60(6):1482–1500

    Article  CAS  PubMed  Google Scholar 

  64. Wu SJ, Tsai JY, Chang SP, Lin DL, Wang SS, Huang SN, Ng LT (2006) Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalis peruviana. J Ethnopharmacol 108:407–413

    Article  CAS  PubMed  Google Scholar 

  65. Yepes SM, Montoya Naranjo LJ, Orozco Sánchez F (2008) Valorización de residuos agroindustriales –frutas- en Medellín y el Sur del valle del Aburrá, Colombia. Rev Fac Nac Agron Medellín 61:4422–4431

    Google Scholar 

  66. Mendoza JH, Rodríguez A, Millán CP (2012) Caracterización físico química de la Uchuva (Physalis peruviana) en la región de Silvia Cauca. Biotecnol Sect Agropecuario Agroindustrial 10:188–196

    Google Scholar 

  67. Castro J, Ocampo Y, Franco L (2015) Cape gooseberry (Physalis peruviana L.) calyces ameliorate TNBS acid-induced colitis in rats. J Crohns Colitis 9:1004–1015

    Article  PubMed  Google Scholar 

  68. Park HA, Kwon OK, Ryu HW, Min JH, Park MW, Park MH, Paik JH, Choi S, Paryanto I, Yuniato P, Oh SR, Ahn KS, Lee JW (2019) Physalis peruviana L. inhibits ovalbumin induced airway inflammation by attenuating the activation of NFkappaB and inflammatory molecules. Int J Mol Med 43(4):1830–1838

    CAS  PubMed  PubMed Central  Google Scholar 

  69. DeLeve LD, Kaplowitz N (1995) Mechanisms of drug-induced liver disease. Gastroenterol Clin North Am 24:787–810

    CAS  PubMed  Google Scholar 

  70. Arun M, Asha VV (2007) Preliminary studies on antihepatotoxic effect of Physalis peruviana Linn. (Solanaceae) against carbon tetrachloride induced acute liver injury in rats. J. Ethnopharmacol 111:110–114

    Article  CAS  Google Scholar 

  71. Dkhil MA, Al-Quraishy S, Diab MM, Othman MS, Aref AM, Abdel Moneim AE (2014) The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity. Food Chem Toxicol 74:98–106

    Article  CAS  PubMed  Google Scholar 

  72. Wu SJ, Ng LT, Chen CH, Lin DL, Wang SS, Lin CC (2004) Antihepatoma activity of Physalis angulata and Physalis peruviana extracts and their effects on apoptosis in human Hep G2 cells. Life Sci 74:2061–2073

    Article  CAS  PubMed  Google Scholar 

  73. Wu SJ, Ng LT, Lin DL, Wang SS, Lin CC (2004) Physalis peruviana extract induces apoptosis in human Hep G2 cells through CD95/CD95L system and the mitochondrial signaling transduction pathway. Cancer Lett 215:199–208

    Article  CAS  PubMed  Google Scholar 

  74. Wu SJ, Ng LT, Huang YM, Lin DL, Wang SS, Huang SN, Lin CC (2005) Antioxidant activities of Physalis peruviana. Biol Pharmaceut Bull 28:963–966

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Fawzy Ramadan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ramadan, M.F. (2019). Bioactive Phytochemicals of Cape Gooseberry (Physalis peruviana L.). In: Murthy, H., Bapat, V. (eds) Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-06120-3_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06120-3_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06120-3

  • Online ISBN: 978-3-030-06120-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics