Skip to main content

Vascularization of 3D Engineered Tissues

  • Reference work entry
  • First Online:
Tissue-Engineered Vascular Grafts

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 674 Accesses

Abstract

Cell-based tissue engineering technology has emerged as a new therapeutic option for repairing and restoring damaged tissue or organ. Vascularization (angiogenesis) is a fundamental requirement to provide oxygen/nutrients and remove the waste product for maintaining the phenotypes and functionality of implanted cells. Over the last decade, various strategies have been introduced to improve vascularization of 3D engineered tissue by developing technologies related to angiogenic factor delivery system, cell transplantation, HIF-mediated environment, scaffold design, and biofabrication technique. This chapter covers an overview of recent efforts that aim to promote vascularization in tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez Fallas ME, Piccoli M, Franzin C, Sgro A, Dedja A, Urbani L et al (2018) Decellularized diaphragmatic muscle drives a constructive angiogenic response in vivo. Int J Mol Sci 19(5):1319

    Article  PubMed Central  CAS  Google Scholar 

  • Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22(10):1276–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andree B, Bar A, Haverich A, Hilfiker A (2013) Small intestinal submucosa segments as matrix for tissue engineering: review. Tissue Eng Part B Rev 19(4):279–291

    Article  CAS  PubMed  Google Scholar 

  • Anisimov A, Tvorogov D, Alitalo A, Leppanen VM, An Y, Han EC et al (2013) Vascular endothelial growth factor-angiopoietin chimera with improved properties for therapeutic angiogenesis. Circulation 127(4):424–434

    Article  CAS  PubMed  Google Scholar 

  • Auger FA, Gibot L, Lacroix D (2013) The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng 15:177–200

    Article  CAS  PubMed  Google Scholar 

  • Avolio E, Alvino VV, Ghorbel MT, Campagnolo P (2017) Perivascular cells and tissue engineering: current applications and untapped potential. Pharmacol Ther 171:83–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    Article  CAS  PubMed  Google Scholar 

  • Baranski JD, Chaturvedi RR, Stevens KR, Eyckmans J, Carvalho B, Solorzano RD et al (2013) Geometric control of vascular networks to enhance engineered tissue integration and function. Proc Natl Acad Sci USA 110(19):7586–7591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer SM, Bauer RJ, Liu ZJ, Chen H, Goldstein L, Velazquez OC (2005) Vascular endothelial growth factor-C promotes vasculogenesis, angiogenesis, and collagen constriction in three-dimensional collagen gels. J Vasc Surg 41(4):699–707

    Article  PubMed  Google Scholar 

  • Ben-Yosef Y, Miller A, Shapiro S, Lahat N (2005) Hypoxia of endothelial cells leads to MMP-2-dependent survival and death. Am J Physiol Cell Physiol 289(5):C1321–C1331

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7(4):452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges J, Mueller MC, Padron NT, Tegtmeier F, Lang EM, Stark GB (2003) Engineered adipose tissue supplied by functional microvessels. Tissue Eng 9(6):1263–1270

    Article  CAS  PubMed  Google Scholar 

  • Botusan IR, Sunkari VG, Savu O, Catrina AI, Grunler J, Lindberg S et al (2008) Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci USA 105(49):19426–19431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brudno Y, Ennett-Shepard AB, Chen RR, Aizenberg M, Mooney DJ (2013) Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials 34(36):9201–9209

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439

    Article  CAS  PubMed  Google Scholar 

  • Cassell OC, Hofer SO, Morrison WA, Knight KR (2002) Vascularisation of tissue-engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg 55(8):603–610

    Article  CAS  PubMed  Google Scholar 

  • Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864

    Article  CAS  PubMed  Google Scholar 

  • Chan EC, Kuo SM, Kong AM, Morrison WA, Dusting GJ, Mitchell GM et al (2016) Three dimensional collagen scaffold promotes intrinsic vascularisation for tissue engineering applications. PLoS One 11(2):e0149799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen RR, Silva EA, Yuen WW, Mooney DJ (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24(2):258–264

    Article  PubMed  CAS  Google Scholar 

  • Chu H, Wang Y (2012) Therapeutic angiogenesis: controlled delivery of angiogenic factors. Ther Deliv 3(6):693–714

    Article  CAS  PubMed  Google Scholar 

  • Cooper TP, Sefton MV (2011) Fibronectin coating of collagen modules increases in vivo HUVEC survival and vessel formation in SCID mice. Acta Biomater 7(3):1072–1083

    Article  CAS  PubMed  Google Scholar 

  • Costa-Almeida R, Granja PL, Soares R, Guerreiro SG (2014) Cellular strategies to promote vascularisation in tissue engineering applications. Eur Cell Mater 28:51–66; discussion 66–7

    Article  CAS  PubMed  Google Scholar 

  • Danilevicius P, Rekstyte S, Balciunas E, Kraniauskas A, Jarasiene R, Sirmenis R et al (2012) Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering. J Biomed Opt 17(8):081405-1

    Article  PubMed  CAS  Google Scholar 

  • DeLong SA, Moon JJ, West JL (2005) Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26(16):3227–3234

    Article  CAS  PubMed  Google Scholar 

  • Druecke D, Langer S, Lamme E, Pieper J, Ugarkovic M, Steinau HU et al (2004) Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. J Biomed Mater Res A 68(1):10–18

    Article  PubMed  CAS  Google Scholar 

  • Dvorak HF, Detmar M, Claffey KP, Nagy JA, van de Water L, Senger DR (1995) Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation. Int Arch Allergy Immunol 107(1–3):233–235

    Article  CAS  PubMed  Google Scholar 

  • Elcin YM, Dixit V, Gitnick G (2001) Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif Organs 25(7):558–565

    Article  CAS  PubMed  Google Scholar 

  • Fiedler U, Augustin HG (2006) Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol 27(12):552–558

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31

    Article  CAS  PubMed  Google Scholar 

  • Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638

    Article  CAS  PubMed  Google Scholar 

  • Gerecht-Nir S, Cohen S, Ziskind A, Itskovitz-Eldor J (2004) Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells. Biotechnol Bioeng 88(3):313–320

    Article  CAS  PubMed  Google Scholar 

  • Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683

    CAS  PubMed  Google Scholar 

  • Guan J, Stankus JJ, Wagner WR (2007) Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J Control Release 120(1–2):70–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Arnold SA, Sithu SD, Mahoney ET, Geralds JT, Tran P et al (2010) Rescuing vasculature with intravenous angiopoietin-1 and alpha v beta 3 integrin peptide is protective after spinal cord injury. Brain 133(Pt 4):1026–1042

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153(3):543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbert SP, Huisken J, Kim TN, Feldman ME, Houseman BT, Wang RA et al (2009) Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326(5950):294–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschi KK, Skalak TC, Peirce SM, Little CD (2002) Vascular assembly in natural and engineered tissues. Ann N Y Acad Sci 961:223–242

    Article  CAS  PubMed  Google Scholar 

  • Hoch E, Tovar GE, Borchers K (2014) Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardiothorac Surg 46(5):767–778

    Article  PubMed  Google Scholar 

  • Hoot KE, Oka M, Han G, Bottinger E, Zhang Q, Wang XJ (2010) HGF upregulation contributes to angiogenesis in mice with keratinocyte-specific Smad2 deletion. J Clin Invest 120(10):3606–3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang M, Chan DA, Jia F, Xie X, Li Z, Hoyt G et al (2008) Short hairpin RNA interference therapy for ischemic heart disease. Circulation 118(14 Suppl):S226–S233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues–state of the art and future perspectives. J Biomater Sci Polym Ed 12(1):107–124

    Article  CAS  PubMed  Google Scholar 

  • Jabbarzadeh E, Starnes T, Khan YM, Jiang T, Wirtel AJ, Deng M et al (2008) Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci USA 105(32):11099–11104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693

    Article  CAS  PubMed  Google Scholar 

  • Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W et al (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Wang B, Wang C, He B, Fan H, Shao Q et al (2008) In vivo enhancement of angiogenesis by adenoviral transfer of HIF-1alpha-modified endothelial progenitor cells (Ad-HIF-1alpha-modified EPC for angiogenesis). Int J Biochem Cell Biol 40(10):2284–2295

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Kleinheinz J (2013) Angiogenesis – the key to regeneration. In: Andrades JA (ed) Tissue engineering and regenerative medicine. TechOpen, London, pp 453–473

    Google Scholar 

  • Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH (2006) VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res 21(5):735–744

    Article  CAS  PubMed  Google Scholar 

  • Kanczler JM, Oreffo RO (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15:100–114

    Article  CAS  PubMed  Google Scholar 

  • Kang TY, Hong JM, Jung JW, Kang HW, Cho DW (2016) Construction of large-volume tissue mimics with 3D functional vascular networks. PLoS One 11(5):e0156529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S et al (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93(11):1074–1081

    Article  CAS  PubMed  Google Scholar 

  • Kim BS, Mooney DJ (1998) Engineering smooth muscle tissue with a predefined structure. J Biomed Mater Res 41(2):322–332

    Article  CAS  PubMed  Google Scholar 

  • Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK (2004) Tissue engineering: creation of long-lasting blood vessels. Nature 428(6979):138–139

    Article  CAS  PubMed  Google Scholar 

  • Kraft CN, Weber W, Burian B, Zander D, Wallny T, Schmitt O et al (2002) Striated muscle microvascular response to implants with sol-gel calcium phosphate coating. A comparative in vivo study. Z Orthop Ihre Grenzgeb 140(6):672–680

    Article  CAS  PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  PubMed  Google Scholar 

  • Largo R, Ramakrishnan V, Ehrbar M, Ziogas A, Plock JA, Eberli D (2011) Angiogenesis and vascularity for tissue engineering. In: Eberli D (ed) Regenerative medicine and tissue engineering. Cells and biomaterials. IntechOpen, Rijeka, pp 433–448

    Google Scholar 

  • Laschke MW, Harder Y, Amon M, Martin I, Farhadi J, Ring A et al (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12(8):2093–2104

    Article  CAS  PubMed  Google Scholar 

  • Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 99(7):4391–4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23(7):879–884

    Article  CAS  PubMed  Google Scholar 

  • Li QF, Rabie AB (2007) A new approach to control condylar growth by regulating angiogenesis. Arch Oral Biol 52(11):1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Chen H, Huang X, Costa M (2006) Effects of 12 metal ions on iron regulatory protein 1 (IRP-1) and hypoxia-inducible factor-1 alpha (HIF-1alpha) and HIF-regulated genes. Toxicol Appl Pharmacol 213(3):245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Kumar A, Zhang F, Lee C, Li Y, Tang Z et al (2010) VEGF-independent angiogenic pathways induced by PDGF-C. Oncotarget 1(4):309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Chen B, Sun W, Zhao W, Zhao Y, Dai J (2006) The effect of collagen-targeting platelet-derived growth factor on cellularization and vascularization of collagen scaffolds. Biomaterials 27(33):5708–5714

    Article  CAS  PubMed  Google Scholar 

  • Linh NT, Abueva CD, Lee BT (2017) Enzymatic in situ formed hydrogel from gelatin-tyramine and chitosan-4-hydroxylphenyl acetamide for the co-delivery of human adipose-derived stem cells and platelet-derived growth factor towards vascularization. Biomed Mater 12(1):015026

    Article  PubMed  Google Scholar 

  • Ma B, Li M, Fuchs S, Bischoff I, Hofmann A, Unger RE et al (2020) Short-term hypoxia promotes vascularization in co-culture system consisting of primary human osteoblasts and outgrowth endothelial cells. J Biomed Mater Res A 108(1):7–18

    Article  CAS  PubMed  Google Scholar 

  • Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ et al (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105(2):659–669

    Article  CAS  PubMed  Google Scholar 

  • Marra KG, Defail AJ, Clavijo-Alvarez JA, Badylak SF, Taieb A, Schipper B et al (2008) FGF-2 enhances vascularization for adipose tissue engineering. Plast Reconstr Surg 121(4):1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS et al (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118(5):507–517

    Article  PubMed  Google Scholar 

  • Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooney DJ, Mazzoni CL, Breuer C, McNamara K, Hern D, Vacanti JP et al (1996) Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials 17(2):115–124

    Article  CAS  PubMed  Google Scholar 

  • Moroni L, Schotel R, Sohier J, de Wijn JR, van Blitterswijk CA (2006) Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials 27(35):5918–5926

    Article  CAS  PubMed  Google Scholar 

  • Murga M, Yao L, Tosato G (2004) Derivation of endothelial cells from CD34- umbilical cord blood. Stem Cells 22(3):385–395

    Article  CAS  PubMed  Google Scholar 

  • Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21):5536–5544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikkhah M, Eshak N, Zorlutuna P, Annabi N, Castello M, Kim K et al (2012) Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33(35):9009–9018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomi M, Atala A, Coppi PD, Soker S (2002) Principals of neovascularization for tissue engineering. Mol Asp Med 23(6):463–483

    Article  CAS  Google Scholar 

  • Norton LW, Tegnell E, Toporek SS, Reichert WM (2005) In vitro characterization of vascular endothelial growth factor and dexamethasone releasing hydrogels for implantable probe coatings. Biomaterials 26(16):3285–3297

    Article  CAS  PubMed  Google Scholar 

  • Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O’Sullivan JF et al (2015) Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 17(8):994–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepper MS, Ferrara N, Orci L, Montesano R (1992) Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189(2):824–831

    Article  CAS  PubMed  Google Scholar 

  • Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65(4):489–497

    Article  PubMed  CAS  Google Scholar 

  • Peters EB, Christoforou N, Leong KW, Truskey GA, West JL (2016) Poly(ethylene glycol) hydrogel scaffolds containing cell-adhesive and protease-sensitive peptides support microvessel formation by endothelial progenitor cells. Cell Mol Bioeng 9(1):38–54

    Article  CAS  PubMed  Google Scholar 

  • Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887

    Article  CAS  PubMed  Google Scholar 

  • Quinlan E, Partap S, Azevedo MM, Jell G, Stevens MM, O’Brien FJ (2015) Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials 52:358–366

    Article  CAS  PubMed  Google Scholar 

  • Rajabi S, Jalili-Firoozinezhad S, Ashtiani MK, Le Carrou G, Tajbakhsh S, Baharvand H (2018) Effect of chemical immobilization of SDF-1alpha into muscle-derived scaffolds on angiogenesis and muscle progenitor recruitment. J Tissue Eng Regen Med 12(1):e438–e450

    Article  CAS  PubMed  Google Scholar 

  • Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029–1034

    Article  CAS  PubMed  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674

    Article  CAS  PubMed  Google Scholar 

  • Rocha FG, Sundback CA, Krebs NJ, Leach JK, Mooney DJ, Ashley SW et al (2008) The effect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials 29(19):2884–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roura S, Soler-Botija C, Bago JR, Llucia-Valldeperas A, Fernandez MA, Galvez-Monton C et al (2015) Postinfarction functional recovery driven by a three-dimensional engineered fibrin patch composed of human umbilical cord blood-derived mesenchymal stem cells. Stem Cells Transl Med 4(8):956–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26(8):434–441

    Article  CAS  PubMed  Google Scholar 

  • Rufaihah AJ, Huang NF, Jame S, Lee JC, Nguyen HN, Byers B et al (2011) Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 31(11):e72–e79

    Article  CAS  PubMed  Google Scholar 

  • Saberianpour S, Heidarzadeh M, Geranmayeh MH, Hosseinkhani H, Rahbarghazi R, Nouri M (2018) Tissue engineering strategies for the induction of angiogenesis using biomaterials. J Biol Eng 12:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarker MD, Naghieh S, Sharma NK, Chen X (2018) 3D biofabrication of vascular networks for tissue regeneration: a report on recent advances. J Pharm Anal 8(5):277–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarker MD, Naghieh S, Sharma NK, Ning L, Chen X (2019) Bioprinting of vascularized tissue scaffolds: influence of biopolymer, cells, growth factors, and gene delivery. J Healthc Eng 2019:9156921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt VJ, Wietbrock JO, Leibig N, Gloe T, Henn D, Hernekamp JF et al (2017) Collagen-elastin and collagen-glycosaminoglycan scaffolds promote distinct patterns of matrix maturation and axial vascularization in arteriovenous loop-based soft tissue flaps. Ann Plast Surg 79(1):92–100

    Article  CAS  PubMed  Google Scholar 

  • Schuller-Ravoo S, Zant E, Feijen J, Grijpma DW (2014) Preparation of a designed poly(trimethylene carbonate) microvascular network by stereolithography. Adv Healthc Mater 3(12):2004–2011

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss D, Gabouev AI, Cebotari S, Tudorache I, Walles T, Schlote N et al (2005) Biological vascularized matrix for bladder tissue engineering: matrix preparation, reseeding technique and short-term implantation in a porcine model. J Urol 173(1):276–280

    Article  PubMed  Google Scholar 

  • Shen YH, Shoichet MS, Radisic M (2008) Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater 4(3):477–489

    Article  CAS  PubMed  Google Scholar 

  • Silva LP, Pirraco RP, Santos TC, Novoa-Carballal R, Cerqueira MT, Reis RL et al (2016) Neovascularization induced by the hyaluronic acid-based spongy-like hydrogels degradation products. ACS Appl Mater Interfaces 8(49):33464–33474

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Tayalia P, Mooney DJ (2009) Controlled growth factor delivery for tissue engineering. Adv Mater 21(32–33):3269–3285

    Article  CAS  PubMed  Google Scholar 

  • Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD et al (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286(5449):2511–2514

    Article  CAS  PubMed  Google Scholar 

  • Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D et al (2015) Additive manufacturing. Continuous liquid interface production of 3D objects. Science 347(6228):1349–1352

    Article  CAS  PubMed  Google Scholar 

  • Wake MC, Gupta PK, Mikos AG (1996) Fabrication of pliable biodegradable polymer foams to engineer soft tissues. Cell Transplant 5(4):465–473

    Article  CAS  PubMed  Google Scholar 

  • Wenger A, Stahl A, Weber H, Finkenzeller G, Augustin HG, Stark GB et al (2004) Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng 10(9–10):1536–1547

    Article  CAS  PubMed  Google Scholar 

  • Wray LS, Rnjak-Kovacina J, Mandal BB, Schmidt DF, Gil ES, Kaplan DL (2012) A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials 33(36):9214–9224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–H183

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Wang H, Wang Y, Ren F, Yi W, Zhao K et al (2013) Induction of angiogenesis by controlled delivery of vascular endothelial growth factor using nanoparticles. Cardiovasc Ther 31(3):e12–e18

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Mahadik B, Choi JY, Fisher JP (2020) Vascularization in tissue engineering: fundamentals and stat-of-art. Prog Biomed Eng 2:012002

    Article  Google Scholar 

  • Ye X, Lu L, Kolewe ME, Park H, Larson BL, Kim ES et al (2013) A biodegradable microvessel scaffold as a framework to enable vascular support of engineered tissues. Biomaterials 34(38):10007–10015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Han Q, Lin H, Gao Y, Sun W, Zhao Y et al (2008) Improved neovascularization and wound repair by targeting human basic fibroblast growth factor (bFGF) to fibrin. J Mol Med (Berl) 86(10):1127–1138

    Article  CAS  Google Scholar 

  • Zhu W, Qu X, Zhu J, Ma X, Patel S, Liu J et al (2017) Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 124:106–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimna A, Kurpisz M (2015) Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int 2015:549412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zisch AH, Lutolf MP, Hubbell JA (2003) Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 12(6):295–310

    Article  CAS  PubMed  Google Scholar 

  • Zou D, Zhang Z, He J, Zhang K, Ye D, Han W et al (2012) Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1alpha mediated BMSCs. Biomaterials 33(7):2097–2108

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Yoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ju, Y.M., Atala, A., Yoo, J.J. (2020). Vascularization of 3D Engineered Tissues. In: Walpoth, B.H., Bergmeister, H., Bowlin, G.L., Kong, D., Rotmans, J.I., Zilla, P. (eds) Tissue-Engineered Vascular Grafts. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-05336-9_22

Download citation

Publish with us

Policies and ethics