Skip to main content

Synthetic Materials: Processing and Surface Modifications for Vascular Tissue Engineering

  • Reference work entry
  • First Online:
Tissue-Engineered Vascular Grafts

Abstract

Cardiovascular disease is a prominent issue in developed countries, notably the United States, and is expected to further escalate. As a result, the demand for “off the shelf” vascular grafts will concurrently increase. These readily available grafts for large vessels (>6 mm) are already on the market in the United States and Europe, but reliable products for small diameters vessels have eluded researchers and industry alike. In this chapter, the ideal attributes of a small diameter vascular graft are considered. Prominent synthetic polymers, subdivided into non-resorbable and resorbable, used in vascular grafts are covered. Each polymer’s history, bulk mechanical properties, degradation mechanisms, and notable implementation by researchers are discussed, followed by significant methods of fabrication to construct vascular grafts out of these materials. Subsequently, methods to modify graft surfaces and the materials that can be used to modify these surfaces are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott WM, Megerman J, Hasson JE, L’Italien G, Warnock DF (1987) Effect of compliance mismatch on vascular graft patency. J Vasc Surg 5:376–382

    CAS  PubMed  Google Scholar 

  • Ahn H et al (2015) Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology. Acta Biomater 16:14–22

    CAS  PubMed  Google Scholar 

  • Akbari M et al (2016) Textile technologies and tissue engineering: a path toward organ weaving. Adv Healthc Mater 5:751–766. https://doi.org/10.1002/adhm.201500517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander JH, Smith PK (2016) Coronary-artery bypass grafting. N Engl J Med 375:e22. https://doi.org/10.1056/NEJMc1608042

    Article  PubMed  Google Scholar 

  • Anderson JS, Price TM, Hanson SR, Harker LA (1987) In vitro endothelialization of small-caliber vascular grafts. Surgery 101:577–586

    CAS  PubMed  Google Scholar 

  • Aper T, Wilhelmi M, Gebhardt C, Hoeffler K, Benecke N, Hilfiker A, Haverich A (2016) Novel method for the generation of tissue-engineered vascular grafts based on a highly compacted fibrin matrix. Acta Biomater 29:21–32

    CAS  PubMed  Google Scholar 

  • Bagnasco DS, Ballarin FM, Cymberknop LJ, Balay G, Negreira C, Abraham GA, Armentano RL (2014) Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries. Mater Sci Eng C Mater Biol Appl 45:446–454. https://doi.org/10.1016/j.msec.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  • Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29:2348–2358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassiouny HS, White S, Glagov S, Choi E, Giddens DP, Zarins CK (1992) Anastomotic intimal hyperplasia: mechanical injury or flow induced. J Vasc Surg 15:708–716; discussion 716–707

    CAS  PubMed  Google Scholar 

  • Bastijanic JM, Kligman FL, Marchant RE, Kottke-Marchant K (2016) Dual biofunctional polymer modifications to address endothelialization and smooth muscle cell integration of ePTFE vascular grafts. J Biomed Mater Res A 104:71–81

    PubMed  Google Scholar 

  • Bellon J, Bujan J, Contreras L, Hernando A, Jurado F (1996) Similarity in behavior of polytetrafluoroethylene (ePTFE) prostheses implanted into different interfaces. J Biomed Mater Res A 31:1–9

    CAS  Google Scholar 

  • Berger K, Sauvage LR, Rao AM, Wood SJ (1972) Healing of arterial prostheses in man: its incompleteness. Ann Surg 175:118–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bezwada R, Jamiolkowski D, Cooper K (1998) Poly-dioxanone and its copolymers. In Handbook of Biodegradable Polymers; Domb, A.J., Kost, J., Wiseman, D.M., Eds.; Hardwood Academic Publishers: Amsterdam. The Netherlands. pp. 29–62

    Google Scholar 

  • Biela SA, Su Y, Spatz JP, Kemkemer R (2009) Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano–micro range. Acta Biomater 5:2460–2466

    CAS  PubMed  Google Scholar 

  • Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F (2012) Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interf Sci 170:2–27

    CAS  Google Scholar 

  • Boccafoschi F, Habermehl J, Vesentini S, Mantovani D (2005) Biological performances of collagen-based scaffolds for vascular tissue engineering. Biomaterials 26:7410–7417

    CAS  PubMed  Google Scholar 

  • Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL (2004) Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci 9:e32

    Google Scholar 

  • Boland ED, Coleman BD, Barnes CP, Simpson DG, Wnek GE, Bowlin GL (2005) Electrospinning polydioxanone for biomedical applications. Acta Biomater 1:115–123. https://doi.org/10.1016/j.actbio.2004.09.003

    Article  PubMed  Google Scholar 

  • Boretos JW, Pierce WS (1968) Segmented polyurethane: a polyether polymer. An initial evaluation for biomedical applications. J Biomed Mater Res 2:121–130. https://doi.org/10.1002/jbm.820020109

    Article  CAS  PubMed  Google Scholar 

  • Bos GW, Poot AA, Beugeling T, Van Aken W, Feijen J (1998) Small-diameter vascular graft prostheses: current status. Arch Physiol Biochem 106:100–115

    CAS  PubMed  Google Scholar 

  • Bose GM (1745) Recherches sur la cause et sur la veritable téorie de l’électricité. J.F. Slomac, Wittenberg

    Google Scholar 

  • Bowlin GL, Meyer A, Fields C, Cassano A, Makhoul RG, Allen C, Rittgers SE (2001) The persistence of electrostatically seeded endothelial cells lining a small diameter expanded polytetrafluoroethylene vascular graft. J Biomater Appl 16:157–173. https://doi.org/10.1106/NCQT-JFV9-2EQ1-EBGU

    Article  CAS  PubMed  Google Scholar 

  • Brossollet LJ (1992) Mechanical issues in vascular grafting: a review. Int J Artif Organs 15:579–584

    CAS  PubMed  Google Scholar 

  • Cai W, Liu L (2008) Shape-memory effect of poly (glycerol-sebacate) elastomer. Mater Lett 62:2171–2173

    Google Scholar 

  • Caves JM, Kumar VA, Martinez AW, Kim J, Ripberger CM, Haller CA, Chaikof EL (2010) The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials 31:7175–7182

    CAS  PubMed  Google Scholar 

  • Chan KL, Khankhel AH, Thompson RL, Coisman BJ, Wong KH, Truslow JG, Tien J (2014) Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability. J Biomed Mater Res A 102:3186–3195

    PubMed  Google Scholar 

  • Chen D, Bei J, Wang S (2000) Polycaprolactone microparticles and their biodegradation. Polym Degrad Stab 67:455–459

    CAS  Google Scholar 

  • Chen QZ et al (2008) Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 29:47–57. https://doi.org/10.1016/j.biomaterials.2007.09.010

    Article  CAS  PubMed  Google Scholar 

  • Clowes AW, Kirkman TR, Reidy MA (1986) Mechanisms of arterial graft healing. Rapid transmural capillary ingrowth provides a source of intimal endothelium and smooth muscle in porous PTFE prostheses. Am J Pathol 123:220–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coury AJ, Slaikeu PC, Cahalan PT, Stokes KB, Hobot CM (1988) Factors and interactions affecting the performance of polyurethane elastomers in medical devices. J Biomater Appl 3:130–179. https://doi.org/10.1177/088532828800300202

    Article  CAS  PubMed  Google Scholar 

  • Crapo PM, Wang Y (2010) Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate. Biomaterials 31:1626–1635. https://doi.org/10.1016/j.biomaterials.2009.11.035

    Article  CAS  PubMed  Google Scholar 

  • Curtis A, Forrester J, Clark P (1986) Substrate hydroxylation and cell adhesion. J Cell Sci 86:9–24

    CAS  Google Scholar 

  • Cziperle D et al (1991) Albumin impregnated vascular grafts: albumin resorption and tissue reactions. J Cardiovasc Surg 33:407–414

    Google Scholar 

  • Dahl SL et al (2011) Readily available tissue-engineered vascular grafts. Sci Transl Med 3:68ra69. https://doi.org/10.1126/scitranslmed.3001426

    Article  CAS  Google Scholar 

  • Davidenko N, Bax DV, Schuster CF, Farndale RW, Hamaia SW, Best SM, Cameron RE (2016) Optimisation of UV irradiation as a binding site conserving method for crosslinking collagen-based scaffolds. J Mater Sci Mater Med 27:14

    PubMed  Google Scholar 

  • Davids L, Dower T, Zilla P (1999) The lack of healing in conventional vascular grafts. In: Tissue engineering of vascular prosthetic grafts. R.G. Landes, Austin, pp 3–44

    Google Scholar 

  • de Valence S, Tille J-C, Mugnai D, Mrowczynski W, Gurny R, Möller M, Walpoth BH (2012) Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 33:38–47

    PubMed  Google Scholar 

  • Dekker A, Reitsma K, Beugeling T, Bantjes A, Feijen J, Van Aken W (1991) Adhesion of endothelial cells and adsorption of serum proteins on gas plasma-treated polytetrafluoroethylene. Biomaterials 12:130–138

    CAS  PubMed  Google Scholar 

  • Donovan DL, Schmidt SP, Townshend SP, Njus GO, Sharp WV (1990) Material and structural characterization of human saphenous vein. J Vasc Surg 12:531–537

    CAS  PubMed  Google Scholar 

  • Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151–160

    CAS  Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    CAS  PubMed  Google Scholar 

  • Edwards A, Carson RJ, Bowald S, Quist WC (1995) Development of a microporous compliant small bore vascular graft. J Biomater Appl 10:171–187

    CAS  PubMed  Google Scholar 

  • Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW (2008) Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 9:2097–2103

    CAS  PubMed  Google Scholar 

  • Formhals A (1934) Process and apparatus for preparing artificial threads. U.S. Patent 1975504A. 2 October 1934

    Google Scholar 

  • Friedman SG, Lazzaro RS, Spier LN, Moccio C, Tortolani AJ (1995) A prospective randomized comparison of Dacron and polytetrafluoroethylene aortic bifurcation grafts. Surgery 117:7–17

    CAS  PubMed  Google Scholar 

  • Fung YC (1984) Blood flow in arteries. Springer-Verlag, New York

    Google Scholar 

  • Gandhi R, Wheeler J, Gregory R (1993) Vascular prosthetics: the Gore-Tex ePTFE stretch graft. Surg Technol Int 2:293–297

    CAS  PubMed  Google Scholar 

  • Garg K, Sell SA, Madurantakam P, Bowlin GL (2009) Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts. Biomed Mater 4:031001. https://doi.org/10.1088/1748-6041/4/3/031001

    Article  CAS  PubMed  Google Scholar 

  • Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery- polyglycolic/poly(actic acid) homo- and copolymers: 1. Polymer 20:1459–1464

    CAS  Google Scholar 

  • Grassl E, Oegema T, Tranquillo R (2002) Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J Biomed Mater Res A 60:607–612

    CAS  Google Scholar 

  • Green RM et al (2000) Prosthetic above-knee femoropopliteal bypass grafting: five-year results of a randomized trial. J Vasc Surg 31:417–425

    CAS  PubMed  Google Scholar 

  • Greenwald S, Berry C (2000) Improving vascular grafts: the importance of mechanical and haemodynamic properties. J Pathol 190:292–299

    CAS  PubMed  Google Scholar 

  • Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703

    CAS  Google Scholar 

  • Greisler HP (1982) Arterial regeneration over absorbable prostheses. Arch Surg 117:1425–1431

    CAS  PubMed  Google Scholar 

  • Greisler HP, Ellinger J, Schwarcz TH, Golan J, Raymond RM, Kim DU (1987) Arterial regeneration over polydioxanone prostheses in the rabbit. Arch Surg 122:715–721

    CAS  PubMed  Google Scholar 

  • Greisler HP, Endean ED, Klosak JJ, Ellinger J, Dennis JW, Buttle K, Kim DU (1988) Polyglactin 910/polydioxanone bicomponent totally resorbable vascular prostheses. J Vasc Surg 7:697–705

    CAS  PubMed  Google Scholar 

  • Gunatillake PA, Martin DJ, Meijs GF, McCarthy SJ, Adhikari R (2003) Designing biostable polyurethane elastomers for biomedical implants. Aust J Chem 56:545–557

    CAS  Google Scholar 

  • Gunatillake PA, Mayadunne R, Adhikari R (2006) Recent development in biodegradable synthetic polymers. In: Biotechnology annual review, vol 12. Elsevier Science, Amsterdam, The Netherlands. pp 301–347

    Google Scholar 

  • Guo J, Zhao M, Ti Y, Wang B (2007) Study on structure and performance of polycarbonate urethane synthesized via different copolymerization methods. J Mater Sci 42:5508–5515

    CAS  Google Scholar 

  • Herring M, Gardner A, Glover J (1978) A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery 84:498–504

    CAS  PubMed  Google Scholar 

  • Hess F (1985) History of (MICRO) vascular surgery and the development of small-caliber blood vessel prostheses (with some notes on patency rates and re-endothelialization). Microsurgery 6:59–69

    CAS  PubMed  Google Scholar 

  • Hoshi RA, Van Lith R, Jen MC, Allen JB, Lapidos KA, Ameer G (2013) The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Biomaterials 34:30–41. https://doi.org/10.1016/j.biomaterials.2012.09.046

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Pan X, Zheng J, Ma W, Sun L (2017) In vitro and in vivo evaluation of a coaxial electrospun small caliber vascular graft loaded with heparin and VEGF. Int J Surg 44:244

    PubMed  Google Scholar 

  • Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    CAS  Google Scholar 

  • Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, application, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571

    CAS  Google Scholar 

  • Jeong SI et al (2007) Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 28:1115–1122

    CAS  PubMed  Google Scholar 

  • Jeschke MG, Hermanutz V, Wolf SE, Köveker GB (1999) Polyurethane vascular prostheses decreases neointimal formation compared with expanded polytetrafluoroethylene. J Vasc Surg 29:168–176

    CAS  PubMed  Google Scholar 

  • Jonas RA, Ziemer G, Schoen FJ, Britton L, Castaneda AR (1988) A new sealant for knitted Dacron prostheses: minimally cross-linked gelatin. J Vasc Surg 7:414–419

    CAS  PubMed  Google Scholar 

  • Kakisis JD, Liapis CD, Breuer C, Sumpio BE (2005) Artificial blood vessel: the holy grail of peripheral vascular surgery. J Vasc Surg 41:349–354

    PubMed  Google Scholar 

  • Kakkos SK et al (2008) Equivalent secondary patency rates of upper extremity Vectra Vascular Access Grafts and transposed brachial-basilic fistulas with aggressive access surveillance and endovascular treatment. J Vasc Surg 47:407–414

    PubMed  Google Scholar 

  • Kangac SS, Petsikasac D, Murchana P, Cziperlea DJ, Rena D, Kimd DU, Greislerabc HP (1997) Effects of albumin coating of knitted Dacron grafts on transinterstitial blood loss and tissue ingrowth and incorporation. Cardiovasc Surg 5:184–189

    Google Scholar 

  • Kempczinski RF, Ramalanjaona GR, Douville C, Silberstein EB (1987) Thrombogenicity of a fibronectin-coated, experimental polytetrafluoroethylene graft. Surgery 101:439–444

    CAS  PubMed  Google Scholar 

  • Kemppainen JM, Hollister SJ (2010) Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. J Biomed Mater Res A 94:9–18. https://doi.org/10.1002/jbm.a.32653

    Article  CAS  PubMed  Google Scholar 

  • Klinkert P, Post PN, Breslau PJ, van Bockel JH (2004) Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc Surg 27:357–362. https://doi.org/10.1016/j.ejvs.2003.12.027

    Article  CAS  PubMed  Google Scholar 

  • Koens M et al (2015) Vascular replacement using a layered elastin-collagen vascular graft in a porcine model: one week patency versus one month occlusion. Organogenesis 11:105–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konig G et al (2009) Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30:1542–1550

    CAS  PubMed  Google Scholar 

  • Kottke-Marchant K, Anderson JM, Umemura Y, Marchant RE (1989) Effect of albumin coating on the in vitro blood compatibility of Dacron arterial prostheses. Biomaterials 10:147–155

    CAS  PubMed  Google Scholar 

  • Kulkarni RK, Moore EG, Hegyeli AF, Leonard F (1971) Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 5:169–181. https://doi.org/10.1002/jbm.820050305

    Article  CAS  PubMed  Google Scholar 

  • Kumar VA, Caves JM, Haller CA, Dai E, Liu L, Grainger S, Chaikof EL (2013) Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomater 9:8067–8074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon IK, Matsuda T (2005) Co-electrospun nanofiber fabrics of poly (L-lactide-co-ε-caprolactone) with type I collagen or heparin. Biomacromolecules 6:2096–2105

    CAS  PubMed  Google Scholar 

  • L’Heureux N et al (2006) Human tissue engineered blood vessel for adult arterial revascularization. Nat Med 12:361

    PubMed  PubMed Central  Google Scholar 

  • Lawton E, Ringwald EL (1989) Physical constants of poly(oxyethylene oxyterephthaloyl)[poly(ethylene terephthalate)]. In: Immergut E (ed) Polymer handbook, 3rd edn. Wiley, New York, pp V101–V105

    Google Scholar 

  • Lee KW, Wang Y (2011) Elastomeric PGS scaffolds in arterial tissue engineering. J Vis Exp. https://doi.org/10.3791/2691

  • Lee HB, Kim SS, Khang G (1995) Polymers used as biomaterials. In: The biomedical engineering handbook. CRC Press, Inc

    Google Scholar 

  • Leong MF, Chan WY, Chian KS (2013) Cryogenic electrospinning: proposed mechanism, process parameters and its use in engineering of bilayered tissue structures. Nanomedicine 8:555–566

    CAS  PubMed  Google Scholar 

  • Li S, Bhatia S, Hu YL, Shiu YT, Li YS, Usami S, Chien S (2001) Effects of morphological patterning on endothelial cell migration. Biorheology 38:101–108

    CAS  PubMed  Google Scholar 

  • Li C, Wang F, Douglas G, Zhang Z, Guidoin R, Wang L (2017) Comprehensive mechanical characterization of PLA fabric combined with PCL to form a composite structure vascular graft. J Mech Behav Biomed Mater 69:39–49

    CAS  PubMed  Google Scholar 

  • Liao I, Moutos FT, Estes BT, Zhao X, Guilak F (2013) Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. Adv Funct Mater 23:5833–5839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linderman S, Araya J, Pathan S, Nelson D, Phaneuf M, Contreras M (2014) A small diameter bioactive prosthetic vascular graft with activated protein C (546.9). FASEB J 28:546.549

    Google Scholar 

  • Liu H, Ding X, Bi Y, Gong X, Li X, Zhou G, Fan Y (2013) In vitro evaluation of combined sulfated silk fibroin scaffolds for vascular cell growth. Macromol Biosci 13:755–766

    CAS  PubMed  Google Scholar 

  • Lopes MS, Jardini AL, Filho RM (2012) Poly (lactic acid) production for tissue engineering applications. Process Eng 42:1402–1413

    Google Scholar 

  • Lowery JL, Datta N, Rutledge GC (2010) Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly (ɛ-caprolactone) fibrous mats. Biomaterials 31:491–504

    CAS  PubMed  Google Scholar 

  • Marois Y et al (1993) A novel microporous polyurethane vascular graft: in vivo evaluation of the UTA prosthesis implanted as infra-renal aortic substitute in dogs. J Investig Surg 6:273–288

    CAS  Google Scholar 

  • Martz H et al (1988) Hydrophilic microporous polyurethane versus expanded PTFE grafts as substitutes in the carotid arteries of dogs. A limited study. J Biomed Mater Res A 22:63–69

    CAS  Google Scholar 

  • Mathews A, Colombus S, Krishnan VK, Krishnan LK (2012) Vascular tissue construction on poly (ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size. J Tissue Eng Regen Med 6:451–461

    CAS  PubMed  Google Scholar 

  • Matsuda T, Nakayama Y (1996) Surface microarchitectural design in biomedical applications: in vitro transmural endothelialization on microporous segmented polyurethane films fabricated using an excimer laser. J Biomed Mater Res 31:235–242. https://doi.org/10.1002/(SICI)1097-4636(199606)31:2<235::AID-JBM10>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  • McClure MJ, Wolfe PS, Simpson DG, Sell SA, Bowlin GL (2012) The use of air-flow impedance to control fiber deposition patterns during electrospinning. Biomaterials 33:771–779

    CAS  PubMed  Google Scholar 

  • McKenna KA et al (2012) Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials. Acta Biomater 8:225–233

    CAS  PubMed  Google Scholar 

  • Melchiorri AJ, Hibino N, Fisher JP (2013) Strategies and techniques to enhance the in situ endothelialization of small-diameter biodegradable polymeric vascular grafts. Tissue Eng Part B Rev 19:292–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DC, Thapa A, Haberstroh KM, Webster TJ (2004) Endothelial and vascular smooth muscle cell function on poly (lactic-co-glycolic acid) with nano-structured surface features. Biomaterials 25:53–61

    CAS  PubMed  Google Scholar 

  • Min B-M, Jeong L, Nam YS, Kim J-M, Kim JY, Park WH (2004) Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes. Int J Biol Macromol 34:223–230

    Google Scholar 

  • Nam YS, Yoon JJ, Lee JG, Park TG (1999) Adhesion behaviours of hepatocytes cultured onto biodegradable polymer surface modified by alkali hydrolysis process. J Biomater Sci Polym Ed 10:1145–1158

    CAS  PubMed  Google Scholar 

  • Narayan D, Venkatraman SS (2008) Effect of pore size and interpore distance on endothelial cell growth on polymers. J Biomed Mater Res A 87:710–718. https://doi.org/10.1002/jbm.a.31749

    Article  CAS  PubMed  Google Scholar 

  • Pachence J, Kohn J (1997) Biodegrable polymers for tissue engineering. In: Lanza R, Langer R, Chick W (eds) Principles of tissue engineering. RG Lands Company, Georgetown

    Google Scholar 

  • Pan Y et al (2017) Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers. Sci Rep 7:3615

    PubMed  PubMed Central  Google Scholar 

  • Patel A, Fine B, Sandig M, Mequanint K (2006) Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc Res 71:40–49

    CAS  PubMed  Google Scholar 

  • Pathiraja AG, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16

    Google Scholar 

  • Pavot V et al (2014) Poly (lactic acid) and poly (lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine 9:2703–2718

    CAS  PubMed  Google Scholar 

  • Pektok E, Nottelet B, Tille JC, Gurny R, Kalangos A, Moeller M, Walpoth BH (2008) Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 118:2563–2570. https://doi.org/10.1161/CIRCULATIONAHA.108.795732

    Article  CAS  PubMed  Google Scholar 

  • Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. Appl Polym Sci 59:37–43

    CAS  Google Scholar 

  • Peters T Jr (1995) All about albumin: biochemistry, genetics, and medical applications. Academic Press. San Diego, California. https://doi.org/10.1016/B978-0-12-552110-9.X5000-4

  • Pfeiffer D et al (2014) Endothelialization of electrospun polycaprolactone (PCL) small caliber vascular grafts spun from different polymer blends. J Biomed Mater Res A 102:4500–4509

    CAS  PubMed  Google Scholar 

  • Polterauer P, Prager M, Hölzenbein T, Karner J, Kretschmer G, Schemper M (1992) Dacron versus polytetrafluoroethylene for Y-aortic bifurcation grafts: a six-year prospective, randomized trial. Surgery 111:626–633

    CAS  PubMed  Google Scholar 

  • Post S et al (2001) Dacron vs polytetrafluoroethylene grafts for femoropopliteal bypass: a prospective randomised multicentre trial. Eur J Vasc Endovasc Surg 22:226–231

    CAS  PubMed  Google Scholar 

  • Prager M et al (2001) Collagen versus gelatin-coated Dacron versus stretch polytetrafluoroethylene in abdominal aortic bifurcation graft surgery: results of a seven-year prospective, randomized multicenter trial. Surgery 130:408–414

    CAS  PubMed  Google Scholar 

  • Quarmby J, Burnand K, Lockhart S, Donald A, Sommerville K, Jamieson C, Browse N (1998) Prospective randomized trial of woven versus collagen-impregnated knitted prosthetic Dacron grafts in aortoiliac surgery. Br J Surg 85:775–777

    CAS  PubMed  Google Scholar 

  • Ramsey W, Hertl W, Nowlan E, Binkowski N (1984) Surface treatments and cell attachment. In Vitro Cell Dev Biol Plant 20:802–808

    CAS  Google Scholar 

  • Ravari H, Kazemzade GH, Modaghegh MHS, Khashayar P (2010) Patency rate and complications of polytetrafluoroethylene grafts compared with polyurethane grafts for hemodialysis access. Ups J Med Sci 115:245–248

    PubMed  PubMed Central  Google Scholar 

  • Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216

    CAS  Google Scholar 

  • Rhodes JM, Simons M (2007) The extracellular matrix and blood vessel formation: not just a scaffold. J Cell Mol Med 11:176–205. https://doi.org/10.1111/j.1582-4934.2007.00031.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Row S, Peng H, Schlaich EM, Koenigsknecht C, Andreadis ST, Swartz DD (2015) Arterial grafts exhibiting unprecedented cellular infiltration and remodeling in vivo: the role of cells in the vascular wall. Biomaterials 50:115–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715. https://doi.org/10.1146/annurev.cellbio.12.1.697

    Article  CAS  PubMed  Google Scholar 

  • Salacinski HJ, Goldner S, Giudiceandrea A, Hamilton G, Seifalian AM, Edwards A, Carson RJ (2001) The mechanical behavior of vascular grafts: a review. J Biomater Appl 15:241–278

    CAS  PubMed  Google Scholar 

  • Santerre J, Labow R, Duguay D, Erfle D, Adams G (1994) Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes. J Biomed Mater Res A 28:1187–1199

    CAS  Google Scholar 

  • Sarkar S, Schmitz-Rixen T, Hamilton G, Seifalian AM (2007) Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review. Med Biol Eng Comput 45:327–336

    PubMed  Google Scholar 

  • Sauvage LR, Berger KE, Wood SJ, Yates SG 2nd, Smith JC, Mansfield PB (1974) Interspecies healing of porous arterial prostheses: observations, 1960 to 1974. Arch Surg 109:698–705

    CAS  PubMed  Google Scholar 

  • Scott S, Gaddy L, Sahmel R, Hoffman H (1987) A collagen coated vascular prosthesis. J Cardiovasc Surg 28:498–504

    CAS  Google Scholar 

  • Seifalian AM, Salacinski HJ, Tiwari A, Edwards A, Bowald S, Hamilton G (2003) In vivo biostability of a poly (carbonate-urea) urethane graft. Biomaterials 24:2549–2557

    CAS  PubMed  Google Scholar 

  • Seifu DG, Purnama A, Mequanint K, Mantovani D (2013) Small-diameter vascular tissue engineering. Nat Rev Cardiol 10:410–421

    CAS  PubMed  Google Scholar 

  • Selders GS, Fetz AE, Speer SL, Bowlin GL (2016) Fabrication and characterization of air-impedance electrospun polydioxanone templates. Electrospinning 1:20–30

    Google Scholar 

  • Shalaby S (1996) Classes of materials used in medicine: fabrics. In: Ratner B (ed) Biomaterials science, an introduction to materials in medicine. Academic, San Diego, pp 118–124

    Google Scholar 

  • Simonet M, Schneider OD, Neuenschwander P, Stark WJ (2007) Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template. Polym Eng Sci 47:2020–2026

    CAS  Google Scholar 

  • Sivalingam G, Karthik R, Madras G (2003) Kinetics of thermal degradation of poly (ε-caprolactone). J Anal Appl Pyrolysis 70:631–647

    CAS  Google Scholar 

  • Sivalingam G, Vijayalakshmi S, Madras G (2004) Enzymatic and thermal degradation of poly (ε-caprolactone), poly (D, L-lactide), and their blends. Ind Eng Chem Res 43:7702–7709

    CAS  Google Scholar 

  • Smith MJ, McClure MJ, Sell SA, Barnes CP, Walpoth BH, Simpson DG, Bowlin GL (2008) Suture-reinforced electrospun polydioxanone–elastin small-diameter tubes for use in vascular tissue engineering: a feasibility study. Acta Biomater 4:58–66

    CAS  PubMed  Google Scholar 

  • Soldani G et al (2010) Long term performance of small-diameter vascular grafts made of a poly (ether) urethane–polydimethylsiloxane semi-interpenetrating polymeric network. Biomaterials 31:2592–2605

    CAS  PubMed  Google Scholar 

  • Soletti L, Hong Y, Guan J, Stankus JJ, El-Kurdi MS, Wagner WR, Vorp DA (2010) A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater 6:110–122. https://doi.org/10.1016/j.actbio.2009.06.026

    Article  CAS  PubMed  Google Scholar 

  • Soto M, Sebastián RM, Marquet J (2014) Photochemical activation of extremely weak nucleophiles: highly fluorinated urethanes and polyurethanes from polyfluoro alcohols. J Org Chem 79:5019–5027

    CAS  PubMed  Google Scholar 

  • Sottiurai VS, Yao JS, Flinn WR, Batson RC (1983) Intimal hyperplasia and neointima: an ultrastructural analysis of thrombosed grafts in humans. Surgery 93:809–817

    CAS  PubMed  Google Scholar 

  • Sottiurai VS, Sue SL, Feinberg EL 2nd, Bringaze WL, Tran AT, Batson RC (1988) Distal anastomotic intimal hyperplasia: biogenesis and etiology. Eur J Vasc Surg 2:245–256

    CAS  PubMed  Google Scholar 

  • Stankus JJ, Guan J, Fujimoto K, Wagner WR (2006) Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 27:735–744

    CAS  PubMed  Google Scholar 

  • Stanley JC, Graham L, Glover J (1986) Endothelial cell seeded synthetic vascular grafts. In: Vascular graft update: safety and performance. ASTM, Philadelphia, pp 33–43

    Google Scholar 

  • Stekelenburg M, Rutten MC, Snoeckx LH, Baaijens FP (2009) Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts. Tissue Eng Part A 15:1081–1089. https://doi.org/10.1089/ten.tea.2008.0183

    Article  CAS  PubMed  Google Scholar 

  • Stewart SF, Lyman DJ (1992) Effects of a vascular graft/natural artery compliance mismatch on pulsatile flow. J Biomech 25:297–310

    CAS  PubMed  Google Scholar 

  • Sugiura T et al (2016) Novel bioresorbable vascular graft with sponge-type scaffold as a small-diameter arterial graft. Ann Thorac Surg 102:720–727. https://doi.org/10.1016/j.athoracsur.2016.01.110

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugiura T et al (2017) Fast-degrading bioresorbable arterial vascular graft with high cellular infiltration inhibits calcification of the graft. J Vasc Surg 66:243–250

    PubMed  Google Scholar 

  • Sundback CA, Shyu JY, Wang Y, Faquin WC, Langer RS, Vacanti JP, Hadlock TA (2005) Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 26:5454–5464. https://doi.org/10.1016/j.biomaterials.2005.02.004

    Article  CAS  PubMed  Google Scholar 

  • Syedain ZH, Meier LA, Lahti MT, Johnson SL, Tranquillo RT (2014) Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng Part A 20:1726–1734. https://doi.org/10.1089/ten.TEA.2013.0550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syedain Z, Reimer J, Lahti M, Berry J, Johnson S, Tranquillo RT (2016) Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat Commun 7, 12951

    Google Scholar 

  • Syedain ZH, Graham ML, Dunn TB, O’Brien T, Johnson SL, Schumacher RJ, Tranquillo RT (2017) A completely biological “off-the-shelf” arteriovenous graft that recellularizes in baboons. Sci Transl Med 9. https://doi.org/10.1126/scitranslmed.aan4209

  • Teebken OE, Pichlmaier AM, Haverich A (2001) Cell seeded decellularised allogeneic matrix grafts and biodegradable polydioxanone-prostheses compared with arterial autografts in a porcine model. Eur J Vasc Endovasc Surg 22:139–145. https://doi.org/10.1053/ejvs.2001.1403

    Article  CAS  PubMed  Google Scholar 

  • Tillman BW, Yazdani SK, Lee SJ, Geary RL, Atala A, Yoo JJ (2009) The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials 30:583–588

    CAS  PubMed  Google Scholar 

  • Tiwari A, Salacinski HJ, Hamilton G, Seifalian AM (2001) Tissue engineering of vascular bypass grafts: role of endothelial cell extraction. Eur J Vasc Endovasc Surg 21:193–201. https://doi.org/10.1053/ejvs.2001.1316

    Article  CAS  PubMed  Google Scholar 

  • Tomizawa Y (2014) Late spontaneous nonanastomotic transgraft hemorrhage from biological material-impregnated fabric vascular graft may be due to autologous tissue detachment: a clinical hypothesis. Artif Organs 38:1058–1060

    PubMed  Google Scholar 

  • Torikai K et al (2008) A self-renewing, tissue-engineered vascular graft for arterial reconstruction. J Thorac Cardiovasc Surg 136:37–45.e31

    PubMed  Google Scholar 

  • Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49:832–864. https://doi.org/10.1002/polb.22259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uttayarat P, Toworfe GK, Dietrich F, Lelkes PI, Composto RJ (2005) Topographic guidance of endothelial cells on silicone surfaces with micro-to nanogrooves: orientation of actin filaments and focal adhesions. J Biomed Mater Res A 75:668–680

    PubMed  Google Scholar 

  • Uttayarat P, Chen M, Li M, Allen FD, Composto RJ, Lelkes PI (2008) Microtopography and flow modulate the direction of endothelial cell migration. Am J Phys Heart Circ Phys 294:H1027–H1035

    CAS  Google Scholar 

  • Uttayarat P et al (2010) Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomater 6:4229–4237

    CAS  PubMed  Google Scholar 

  • van Wachem PB, Stronck JW, Koers-Zuideveld R, Dijk F, Wildevuur CR (1990) Vacuum cell seeding: a new method for the fast application of an evenly distributed cell layer on porous vascular grafts. Biomaterials 11:602–606

    PubMed  Google Scholar 

  • Vroman L, Adams AL (1969) Identification of rapid changes at plasma–solid interfaces. J Biomed Mater Res A 3:43–67

    CAS  Google Scholar 

  • Walpoth BH, Bowlin GL (2005) The daunting quest for a small diameter vascular graft. Expert Rev Med Devices 2:647–651. https://doi.org/10.1586/17434440.2.6.647

    Article  PubMed  Google Scholar 

  • Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotechnol 20:602–606

    CAS  PubMed  Google Scholar 

  • Wang X, Lin P, Yao Q, Chen C (2007) Development of small-diameter vascular grafts. World J Surg 31:682–689

    PubMed  Google Scholar 

  • Wang K, Xu M, Zhu M, Su H, Wang H, Kong D, Wang L (2013) Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration. J Biomed Mater Res A 101:3474–3481

    PubMed  Google Scholar 

  • Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400

    CAS  PubMed  Google Scholar 

  • Williamson MR, Black R, Kielty C (2006) PCL–PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials 27:3608–3616

    CAS  PubMed  Google Scholar 

  • Wise SG, Byrom MJ, Waterhouse A, Bannon PG, Ng MK, Weiss AS (2011) A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater 7:295–303

    CAS  PubMed  Google Scholar 

  • Wong CS, Liu X, Xu Z, Lin T, Wang X (2013) Elastin and collagen enhances electrospun aligned polyurethane as scaffolds for vascular graft. J Mater Sci Mater Med 24:1865–1874

    CAS  PubMed  Google Scholar 

  • Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer – polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    CAS  Google Scholar 

  • World Health Organization (2013) A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013. WHO Press. Geneva, Switzerland

    Google Scholar 

  • Xie X, Eberhart A, Guidoin R, Marois Y, Douville Y, Zhang Z (2010) Five types of polyurethane vascular grafts in dogs: the importance of structural design and material selection. J Biomater Sci Polym Ed 21:1239–1264

    CAS  PubMed  Google Scholar 

  • Xie Y, Guan Y, Kim S-H, King MW (2016) The mechanical performance of weft-knitted/electrospun bilayer small diameter vascular prostheses. J Mech Behav Biomed Mater 61:410–418

    CAS  PubMed  Google Scholar 

  • Xue L, Greisler HP (2003) Biomaterials in the development and future of vascular grafts. J Vasc Surg 37:472–480

    PubMed  Google Scholar 

  • Yamada H (1970) Mechanical properties of circulatory organs and tissues. In: Evans FG (ed) Strength of biological materials. Robert E. Krieger, New York, pp 106–137

    Google Scholar 

  • Yamashita Y (2007) Electrospining the latest in nanotechnology – The creative of nanofibers. Sen-i sha, Osaka

    Google Scholar 

  • Yates SG et al (1978) The preclotting of porous arterial prostheses. Ann Surg 188:611–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin A, Luo R, Li J, Mo X, Wang Y, Zhang X (2017) Coaxial electrospinning multicomponent functional controlled-release vascular graft: optimization of graft properties. Colloids Surf B: Biointerfaces 152:432–439

    CAS  PubMed  Google Scholar 

  • You Y, Min BM, Lee SJ, Lee TS, Park WH (2005) In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly (lactide-co-glycolide). J Appl Polym Sci 95:193–200

    CAS  Google Scholar 

  • Yuan X, Mak AF, Yao K (2003) Surface degradation of poly (L-lactic acid) fibres in a concentrated alkaline solution. Polym Degrad Stab 79:45–52

    CAS  Google Scholar 

  • Zhang Z et al (1997) Vascugraft® polyurethane arterial prosthesis as femoro-popliteal and femoro-peroneal bypasses in humans: pathological, structural and chemical analyses of four excised grafts. Biomaterials 18:113–124

    CAS  PubMed  Google Scholar 

  • Zhu Y, Gao C, Liu X, Shen J (2002) Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 3:1312–1319

    CAS  PubMed  Google Scholar 

  • Zhu Y, Cao Y, Pan J, Liu Y (2010) Macro-alignment of electrospun fibers for vascular tissue engineering. J Biomed Mater Res B Appl Biomater 92:508–516

    PubMed  Google Scholar 

  • Zhu M et al (2015) Circumferentially aligned fibers guided functional neoartery regeneration in vivo. Biomaterials 61:85–94. https://doi.org/10.1016/j.biomaterials.2015.05.024

    Article  CAS  PubMed  Google Scholar 

  • Zilla P, Bezuidenhout D, Human P (2007) Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials 28:5009–5027. https://doi.org/10.1016/j.biomaterials.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  • Zorlutuna P, Rong Z, Vadgama P, Hasirci V (2009) Influence of nanopatterns on endothelial cell adhesion: enhanced cell retention under shear stress. Acta Biomater 5:2451–2459

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Bowlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

King, W.E., Minden-Birkenmaier, B.A., Bowlin, G.L. (2020). Synthetic Materials: Processing and Surface Modifications for Vascular Tissue Engineering. In: Walpoth, B.H., Bergmeister, H., Bowlin, G.L., Kong, D., Rotmans, J.I., Zilla, P. (eds) Tissue-Engineered Vascular Grafts. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-05336-9_2

Download citation

Publish with us

Policies and ethics