Skip to main content

The Incorporation and Release of Bioactive Molecules in Vascular Grafts

  • Reference work entry
  • First Online:
Tissue-Engineered Vascular Grafts

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 684 Accesses

Abstract

Cardiovascular diseases account for massive socioeconomic burden worldwide. Whereas the use of native arteries for vascular grafting is the gold-standard treatment option, donor-site associated infection risk and/or prior use, limit their full therapeutic utilization. Consequently, artificial vascular grafts offer an invaluable solution for vascular grafting. However, their use is often hindered by risk of thromboembolic complication and intimal hyperplasia (IH). To circumvent these limitations, a wide range of strategies have been pursued, including the use of physico-chemical cues and bioactive molecules to enhance endothelialization, cellularization, and remodeling; as well as to overcome IH, thrombosis, and infection. Various types of bioactive molecules, including extracellular matrix (ECM) proteins, growth factors, growth factor mimetic molecules, peptides, ECM-derived peptides, phage display-derived peptides, and therapeutic molecules have been incorporated into artificial vascular grafts. Through incorporation by various means, such as encapsulation, physical adsorption/absorption, non-covalent conjugation, and covalent conjugation, vascular graft performance and remodeling have shown beneficial outcomes. In this chapter, we discuss the key approaches being pursued in the design of novel polymer types for vascular regeneration applications. Particularly, we provide a framework for the enhancement of endothelialization, the improvement of cellularization, overcoming IH, modulating smooth muscle cell phenotype, and the positive regulation of the inflammatory response towards the polarization of macrophages into anti-inflammatory phenotypes. Moreover, we have identified key biomolecules and approaches, which have potential for improving blood vessel regeneration, but have not yet been comprehensively evaluated. Taken together, the appropriate combination of biomolecules along with fitting scaffold materials, as discussed herein, may greatly benefit vascular reconstruction for healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebayehu D, Spence A, Boyan BD, Schwartz Z, Ryan JJ, McClure MJ (2017) Galectin-1 promotes an M2 macrophage response to polydioxanone scaffolds. J Biomed Mater Res Part A 105A:2562–2571

    Google Scholar 

  • Acevedo L, Yu J, Erdjument-Bromage H, Miao RQ, Kim JE, Fulton D, Tempst P, Strittmatter SM, Sessa WC (2004) A new role for Nogo as a regulator of vascular remodeling. Nat Med 10:382–388

    CAS  PubMed  Google Scholar 

  • Ballotta E, Renon L, Toffano M, Da Giau G (2003) Prospective randomized study on bilateral above-knee femoropopliteal revascularization: polytetrafluoroethylene graft versus reversed saphenous vein. J Vasc Surg 38:1051–1055

    PubMed  Google Scholar 

  • Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JHY, Alger HM, Wong SS, Muntner P (2018) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 137:e1–e458

    Google Scholar 

  • Brewster LP, Bufallino D, Ucuzian A, Greisler HP (2007) Growing a living blood vessel: insights for the second hundred years. Biomaterials 28:5028–5032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, An J, Weng L, Li Y, Xu H, Wang Y, Ding D, Kong D, Wang S (2014) Construction and biofunctional evaluation of electrospun vascular graft loaded with selenocystamine for in situ catalytic generation of nitric oxide. Mater Sci Eng C Mater Biol Appl 5:491–496

    Google Scholar 

  • Chen X, Wang J, An Q, Li D, Liu P, Zhu W, Mo X (2015) Electrospun poly(l-lactic acid-co-caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation. Colloid Surf B Biointerface 128:106–114

    CAS  Google Scholar 

  • Cho SW, Lim JE, Chu HS, Hyun HJ, Choi CY, Hwang KC, Yoo KJ, Kim DI, Kim BS (2006) Enhancement of in vivo endothelialization of tissue-engineered vascular grafts by granulocyte colony-stimulating factor. J Biomed Mater Res Part A 76:252–263

    Google Scholar 

  • Choi WS, Joung YK, Lee Y, Bae JW, Park HK, Park YH, Park JC, Park KD (2016) Enhanced patency and endothelialization of small-caliber vascular grafts fabricated by coimmobilization of heparin and cell-adhesive peptides. ACS Appl Mater Interfaces 8:4336–4346

    CAS  PubMed  Google Scholar 

  • Garg K, Pullen NA, Oskeritzian CA, Ryan JJ, Bowlin GL (2013) Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 34:4439–4451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grafahrend D, Heffels K-H, Beer MV, Gasteier P, Möller M, Boehm G, Dalton PD, Groll J (2011) Degradable polyester scaffolds with controlled surface chemistry combining minimal proteinadsorption with specific bioactivation. Nat Mater 10:67–73

    CAS  PubMed  Google Scholar 

  • Greenwald SE, Berry CL (2000) Improving vascular grafts: the importance of mechanical and haemodynamic properties. J Pathol 190:292–299

    CAS  PubMed  Google Scholar 

  • Hadinata IE, Hayward PAR, Hare DL, Matalanis GS, Seevanayagam S, Rosalion A, Buxton BF (2009) Choice of conduit for the right coronary system: 8-year analysis of radial artery patency and clinical outcomes trial. Ann Thorac Surg 88:1404–1409

    PubMed  Google Scholar 

  • Hibino N, Villalona G, Pietris N, Duncan DR, Schoffner A, Roh JD (2011) Tissue-engineered vascular grafts form neovessels that arise from the regeneration of adjacent vessels. FASEB J 25:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hibino N, Best CA, Engle A, Ghimbovschi S, Knoblach S, Nath DS, Ishibashi N, Jonas RA (2016) Novel association of miR-451 with the incidence of TEVG stenosis in a murine model. Tissue Eng Part A 22(1–2):75–82

    CAS  PubMed  Google Scholar 

  • Hoerstrup SP, Cummings MI, Lachat M, Schoen FJ, Jenni R, Leschka S, Neuenschwander S, Schmidt D, Mol A, Günter C, Gössi M, Genoni M, Zund G (2006) Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation 114:I159–I166

    PubMed  Google Scholar 

  • Hutcheson R, Terry R, Chaplin J, Smith E, Musiyenko A, Russell JC, Lincoln T, Rocic P (2013) MicroRNA-145 restores contractile vascular smooth muscle phenotype and coronary collateral growth in the metabolic syndrome. Arterioscler Thromb Vasc Biol 33:727–736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii Y, Sakamoto S-I, Kronengold RT, Virmani R, Rivera EA, Goldman SM, Prechtel EJ, Hill JG, Damiano RD Jr (2008) A novel bioengineered small-caliber vascular graft incorporating heparin and sirolimus: excellent 6-month patency. J Thorac Cardiovasc Surg 135:1237–1246

    PubMed  Google Scholar 

  • Ji Q, Zhang S, Zhang J, Wang Z, Wang J, Cui Y, Pang L, Wang S, Kong D, Zhao Q (2013) Dual functionalization of poly(ε-caprolactone) film surface through supramolecular assembly with the aim of promoting in situ endothelial progenitor cell attachment on vascular grafts. Biomacromolecules 14:4099–4107

    CAS  PubMed  Google Scholar 

  • Jiang K, Weaver JD, Li Y, Chen X, Liang J, Stabler CL (2017) Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials 114:71–81

    CAS  PubMed  Google Scholar 

  • Kano F, Matsubara K, Ueda M, Hibi H, Yamamoto A (2017) Secreted ectodomain of sialic acid-binding ig-like lectin-9 and monocyte chemoattractant protein-1 synergistically regenerate transected rat peripheral nerves by altering macrophage polarity. Stem 35:641–653

    CAS  Google Scholar 

  • Kashyap VS, Ahn SS, Quinones-Baldrich WJ, Choi B-U, Dorey F, Reil TD, Freischlag JA, Moore WS (2002) Infrapopliteal-lower extremity revascularization with prosthetic conduit: a 20-year experience. Vasc Endovasc Surg 36:255–262

    Google Scholar 

  • Kim KL, Han DK, Park K, Song SH, Kim JY, Kim JM, Ki HY, Yie SW, Roh CR, Jeon ES, Kim DK, Suh W (2009) Enhanced dermal wound neovascularization by targeted delivery of endothelial progenitor cells using an RGD-g-PLLA scaffold. Biomaterials 30(22):3742–3748

    CAS  PubMed  Google Scholar 

  • Kitao A, Sato Y, Sawada-Kitamura S, Harada K, Sasaki M, Morikawa H, Shiomi S, Honda M, Matsui O, Nakanuma Y (2009) Endothelial to mesenchymal transition via transforming growth factor-beta1/Smad activation is associated with portal venous stenosis in idiopathic portal hypertension. Am J Pathol 175(2):616–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klinkert P, Post PN, Breslau PJ, van Bockel JH (2004) Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc Surg 27:357–362

    CAS  PubMed  Google Scholar 

  • Kong D, Melo LG, Mangi AA, Zhang L, Lopez-Ilasaca M, Perrella MA, Liew CC, Pratt RE, Dzau VJ (2004a) Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation 109(14):1769–1775

    CAS  PubMed  Google Scholar 

  • Kong D, Melo LG, Gnecchi M, Zhang L, Mostoslavsky G, Liew CC, Pratt RE, Dzau VJ (2004b) Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation 110(14):2039–2046

    CAS  PubMed  Google Scholar 

  • Koobatian MT, Row S, Smith R, Koenigsknecht C, Andreadis ST, Swartz DD (2015) Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Biomaterials 76:344–358

    PubMed  PubMed Central  Google Scholar 

  • Kushwaha M, Anderson JM, Bosworth CA, Andukuri A, Minor WP, Lancaster JR Jr, Anderson PG, Brott BC, Jun HW (2010) A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials 31:1502–1508

    CAS  PubMed  Google Scholar 

  • Leal EC, Carvalho E, Tellechea A, Kafanas A, Tecilazich F, Kearney C, Kuchibhotla S, Auster ME, Kokkotou E, Mooney DJ, LoGerfo FW, Pradhan-Nabzdyk L, Veves A (2015) Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype. Am J Pathol 185(6):1638–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YU, de Dios R-RJ, Mahler N, Best CA, Tara S, Yi T, Shoji T, Sugiura T, Lee AY, Robledo-Avila F, Hibino N, Pober JS, Shinoka T, Partida-Sanchez S, Breuer CK (2016) TGF-β receptor 1 inhibition prevents stenosis of tissue-engineered vascular grafts by reducing host mononuclear phagocyte activation. FASEB J 30:2627–2636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Wang Z, Zhang S, Zheng W, Zhao Q, Zhang J, Wang L, Wang S, Kong D (2013) Functionalization of the surface of electrospun poly(epsilon-caprolactone) mats using zwitterionic poly(carboxybetaine methacrylate) and cell-specific peptide for endothelial progenitor cells capture. Mater Sci Eng C Mater Biol Appl 33(3):1646–1653

    CAS  PubMed  Google Scholar 

  • Lopes LB, Brophy CM, Flynn CR, Yi Z, Bowen BP, Smoke C, Seal B, Panitch A, Komalavilas P (2010) A novel cell permeant peptide inhibitor of MAPKAP kinase II inhibits intimal hyperplasia in a human saphenous vein organ culture model. J Vasc Surg 52:1596–1607

    PubMed  PubMed Central  Google Scholar 

  • Mahara A, Somekawa S, Kobayashi N, Hirano Y, Kimura Y, Fujisato T, Yamaoka T (2015) Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity. Biomaterials 58:54–62

    CAS  PubMed  Google Scholar 

  • Mol A, Smiths AIPM, Bouten CVC, Baaijens FPT (2009) Tissue engineering of heart valves: advances and current challenges. Exp Rev Med Devices 6:259–275

    CAS  Google Scholar 

  • Muylaert DE, van Almen GC, Talacua H, Fledderus JO, Kluin J, Hendrikse SI, van Dongen JL, Sijbesma E, Bosman AW, Mes T, Thakkar SH, Smits AI, Bouten CV, Dankers PY, Verhaar MC (2016) Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1α derived peptides. Biomaterials 76:187–195

    CAS  PubMed  Google Scholar 

  • Niu B, Huang Y, Zhang S, Wang D, Xu H, Kong D, Qiao M (2012) Expression and characterization of hydrophobin HGFI fused with the cell-specific peptide TPS in Pichia pastoris. Protein Expr Purif 83:92–97

    CAS  PubMed  Google Scholar 

  • Potas JR, Haque F, Maclean FL, Nisbet DR (2015) Interleukin-10 conjugated electrospun polycaprolactone (PCL) nanofibre scaffolds for promoting alternatively activated (M2) macrophages around the peripheral nerve in vivo. J. Immunol Methods 420:38–49

    CAS  Google Scholar 

  • Qian Y, Li L, Song Y, Dong L, Chen P, Li X, Cai K, Germershaus O, Yang L, Fan Y (2018) Surface modification of nanofibrous matrices via layer-by-layer functionalized silk assembly for mitigating the foreign body reaction. Biomaterials 164:22–37

    CAS  PubMed  Google Scholar 

  • Roh JD, Sawh-Martinez R, Brennan MP, Jay SM, Devine L, Rao DA, Yi T, Mirensky TL, Nalbandian A, Udelsman B, Hibino N, Shinoka T, Saltzman WM, Snyder E, Kyriakides TR, Pober JS, Breuer CK (2010) Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci U S A 107:4669–4674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roth GA, Forouzanfar MH, Moran AE, Barber R, Nguyen G, Feigin FL, Feigin VL, Naghavi M, Mensah GA, Murray CJL (2015) Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med 372:1333–1341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shafiq M, Jung Y, Kim SH (2015a) Stem cell recruitment, angiogenesis, and tissue regeneration in substance p-conjugated poly(l-lactide-co-ε-caprolactone) nonwoven meshes. J Biomed Mater Res Part A 103:2673–2688

    CAS  Google Scholar 

  • Shafiq M, Jung Y, Kim SH (2015b) In situ vascular regeneration using substance P-immobilised poly(L-lactide-co-ε-caprolactone) scaffolds: stem cell recruitment, angiogenesis, and tissue regeneration. Eur Cell Mater 30:282–302

    CAS  PubMed  Google Scholar 

  • Shafiq M, Jung Y, Kim SH (2016a) Covalent immobilization of stem cell inducing/recruiting factor and heparin on cell-free small-diameter vascular graft for accelerated in situ tissue regeneration. J Biomater Res Part A 104:1352–1371

    CAS  Google Scholar 

  • Shafiq M, Jung Y, Kim SH (2016b) Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials 105:2670–2684

    Google Scholar 

  • Shafiq M, Jung Y, Kim SH (2017) SDF-1α peptide tethered polyester facilitates tissue repair by endogenous cell mobilization and recruitment. J Biomater Res Part A 105:2670–2684

    CAS  Google Scholar 

  • Shafiq M, Zhang Q, Zhi D, Wang K, Kong D, Kim DH, Kim SH (2018) In situ blood vessel regeneration using SP (substance P) and SDF (stromal cell-derived factor)-1α peptide eluting vascular grafts. Arterioscler Thromb Vasc Biol 38(7):e117–e134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Zhang X, Jiang L, Zhang L, Dong Y, Midgley AC, Kong D, Wang S (2019) Regulation of the inflammatory response by vascular grafts modified with Aspirin-Triggered Resolvin D1 promotes blood vessel regeneration. Acta Biomaterialia 97:360–373

    Google Scholar 

  • Sok MCP, Tria MC, Olingy EE, San Emeterio CL, Botchwey EA (2017) Aspirin-triggered Resolvin D1-modified materials promote the accumulation of pro-regenerative immune cell subsets and enhance vascular remodeling. Acta Biomater 53:109–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiura T, Agarwal R, Tara S, Yi T, Lee Y-U, Breuer CK, Weiss AS, Shinoka T (2017) Tropoelastin inhibits intimal hyperplasia of mouse bioresorbable arterial vascular grafts. Acta Biomater 52:74–80

    CAS  PubMed  Google Scholar 

  • Sun G (2017) Pro-regenerative hydrogel restores scarless skin during cutaneous wound healing. Adv Healthc Mater 6:1700659

    Google Scholar 

  • Tang D, Chen S, Hou D, Gao J, Jiang L, Shi J, Liang Q, Kong D, Wang S (2018) Regulation of macrophage polarization and promotion of endothelialization by NO generating and PEG-YIGSR modified vascular graft. Mater Sci Eng C 84:1–11

    Google Scholar 

  • Wang Z, Sun B, Zhang M, Ou L, Che Y, Zhang J, Kong D (2012) Functionalization of electrospun poly(ε-caprolactone) scaffold with heparin and vascular endothelial growth factors for potential application as vascular grafts. J Bioact Compat Polym 28:154–166

    Google Scholar 

  • Wang Z, Cui Y, Wang J, Yang X, Wu Y, Wang K, Zheng XL, Zhu Y, Kong D, Zhao Q (2014) The effect of thick fibers and large pores of electrospun poly(ɛ-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials 35:5700–5710

    CAS  PubMed  Google Scholar 

  • Wang K, Chen X, Pan Y, Cui Y, Zhou X, Kong D, Zhao Q (2015a) Enhanced vascularization in hybrid PCL/gelatin fibrous scaffolds with sustained release of VEGF, 865076. Biomed Res Int:10

    Google Scholar 

  • Wang Y, Chen S, Pan Y, Gao J, Tang D, Kong D, Wang S (2015b) Rapid in situ endothelialization of a small diameter vascular graft with catalytic nitric oxide generation and promoted endothelial cell adhesion. J Mater Chem B 3:9212–9222

    CAS  PubMed  Google Scholar 

  • Wang Z, Lu Y, Qin K, Wu Y, Tian Y, Wang J, Zhang J, Hou J, Cui Y, Wang K, Shen J, Xu Q, Kong D, Zhao Q (2015c) Enzyme-functionalized vascular grafts catalyze in-situ release of nitric oxide from exogenous NO prodrug. J Control Release 210:179–188

    CAS  PubMed  Google Scholar 

  • Wang Z, Wu Y, Wang J, Zhang C, Yan H, Zhu M, Wang K, Li C, Xu Q, Kong D (2017a) Effect of resveratrol on modulation of endothelial cells and macrophages for rapid vascular regeneration from electrospun poly(ε-caprolactone) scaffolds. ACS Appl Mater Interface 9:19541–19551

    CAS  Google Scholar 

  • Wang K, Zhang Q, Zhao L, Pan Y, Wang T, Zhi D, Ma S, Zhang P, Zhao T, Zhang S, Li W, Zhu M, Zhu Y, Zhang J, Qiao M, Kong D (2017b) Functional modification of electrospun poly(ε-caprolactone) vascular grafts with the fusion protein VEGF-HGFI enhanced vascular regeneration. ACS Appl Mater Interfaces 9:11415–11427

    CAS  PubMed  Google Scholar 

  • Williams H, Mill CAE, Monk BA, Hulin-Curtis S, Johnson JL, George SJ (2016) Wnt2 and WISP-1/CCN4 induce intimal thickening via promotion of smooth muscle cell migration. Arterioscler Thromb Vasc Biol 36:1417–1424

    CAS  PubMed  Google Scholar 

  • Wong MM, Chen Y, Margariti A, Winkler B, Campagnolo P, Potter C, Hu Y, Xu Q (2014) Macrophages control vascular stem/progenitor cell plasticity through tumor necrosis factor-α–mediated nuclear factor-κB activation. Arterioscler Thromb Vasc Biol 34:635–643

    CAS  PubMed  Google Scholar 

  • Wu W, Allen RA, Wang Y (2012) Fast degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neo-artery. Nat Med 18:1148–1153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Mottola G, Chatterjee A, Lance KD, Chen M, Siguenza IO, Desai TA, Conte MS (2017) Perivascular delivery of resolvin D1 inhibits neointimal hyperplasia in a rat model of arterial injury. J Vasc Surg 65:207–2017e3

    PubMed  Google Scholar 

  • Yang J, Zeng Y, Zhang C, Chen Y-X, Yang Z, Li Y, Leng X, Kong D, Wei X-Q, Sun H-F, Song C-X (2013) The prevention of restenosis in vivo with a VEGF gene and paclitaxel co-eluting stent. Biomaterials 34:1635–1643

    CAS  PubMed  Google Scholar 

  • Yao Y, Wang J, Cui Y, Xu R, Wang Z, Zhang J, Wang K, Li Y, Zhao Q, Kong D (2014) Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomater 10:2739–2749

    CAS  PubMed  Google Scholar 

  • Yokota T, Ichikawa H, Matsumiya G, Kuratani T, Sakaguchi T, Iwai S, Shirakawa Y, Torikai K, Saito A, Uchimura E, Kawaguchi N, Matsuura N, Sawa Y (2008) In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding. J Thorac Cardiovasc Surg 136:900–907

    PubMed  Google Scholar 

  • Zhang J, Qi H, Wang H, Hu P, Ou L, Guo S, Li J, Che Y, Yu Y, Kong D (2006) Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly (propylene carbonate) graft. Artif Organs 30(12):898–905

    CAS  PubMed  Google Scholar 

  • Zhang J, Li G, Gao S, Yao Y, Pang L, Li Y, Wang W, Zhao Q, Kong D, Li C (2014) Monocyte chemoattractant protein-1 released from polycaprolactone/chitosan hybrid membrane to promote angiogenesis in vivo. J Bioact Compat Polym 29:572–588

    Google Scholar 

  • Zheng W, Wang Z, Song L, Zhao Q, Zhang J, Li D, Wang S, Han J, Zheng X-L, Yang Z, Kong D (2012) Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials 33:2880–2891

    CAS  PubMed  Google Scholar 

  • Zilla P, Bezuidenhout D, Human P (2007) Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials 28:5009–5027

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Grant number 81530059, 81772000, 91639113) and by the Pakistan Institute of Engineering & Applied Sciences Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deling Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shafiq, M., Yan, H., Midgley, A.C., Wang, K., Zhao, Q., Kong, D. (2020). The Incorporation and Release of Bioactive Molecules in Vascular Grafts. In: Walpoth, B.H., Bergmeister, H., Bowlin, G.L., Kong, D., Rotmans, J.I., Zilla, P. (eds) Tissue-Engineered Vascular Grafts. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-05336-9_17

Download citation

Publish with us

Policies and ethics