Advertisement

Semantic Web Empowered E-Tourism

Living reference work entry

Abstract

Smart speakers such as Alexa and later Google Home have introduced Artificial Intelligence (AI) into millions, soon to be billions of households, making AI an everyday experience. These new communication channels present a new challenge for successful e-Marketing and e-Commerce providers. Data, content, and services are becoming semantically annotated, allowing software agents, so-called bots, to search through the web and understand its content. Nowadays, users typically consult their bot to find, aggregate, and personalize information and to reserve, book, or buy products and services. As a consequence, it is becoming increasingly important for touristic providers of information, products, and services to be prominently visible in these new online channels to ensure their future economic maturity. In our chapter, we survey the methods and tools helping to achieve these goals. The core aim is the development and application of machine-processable (semantic) annotations of content, data, and services, as well as their aggregation in large Knowledge Graphs. It is only through these methods bots are able to answer a question in a knowledgeable way and organize a useful dialogue (Knowledge Graphs in Use A significantly extended and generalized version of this article will appear as D. Fensel, K. Angele, E. Huaman, E. Kärle, O. Panasiuk, U. Şimşek, I. Toma, J. Umbrich, and A. Wahler: Knowledge Graphs: Methodology, Tools and Selected Use Cases. Springer Nature, 2020.).

Keywords

Smart speakers Artificial Intelligence (AI) e-Marketing e-Commerce Knowledge graphs Semantic web Semantic technologies 

References

  1. Achichi M, Lisena P, Todorov K, Troncy R, Delahousse J (2018) DOREMUS: a graph of linked musical works. In: Proceedings of the 17th International Semantic Web Conference (ISWC2018), Part II, Monterey, 8–12 Oct 2018. LNCS, vol 11137. SpringerGoogle Scholar
  2. Amato F, Moscato V, Picariello A, Sperlì G (2017) Knowledge-based access to art collections: the KIRA system. In: Proceedings of the 25th Italian Symposium on Advanced Database Systems (SEBD2017), Squillace Lido (Catanzaro), Italy, 25–29 June 2017, CEUR-WS.org, CEUR Workshop Proceedings, vol 2037, p 82Google Scholar
  3. Angles R, Gutierrez C (2005) Querying RDF data from a graph database perspective. In: Proceedings of the 2nd European Semantic Web Conference (ESWC2015), Heraklion, Crete, 29 May–1 June 2005. LNCS, vol 3532. Springer, pp 346–360Google Scholar
  4. Ankolekar A, Burstein M, Hobbs JR, Lassila O, Martin D, McDermott D, McIlraith SA, Narayanan S, Paolucci M, Payne T et al (2002) DAML-S: web service description for the semantic web. In: Proceedings of the 1st International Semantic Web Conference (ISWC2002), Sardinia, 9–12 June 2002. LNCS, vol 2342. Springer, pp 348–363Google Scholar
  5. Araújo S, Hidders J, Schwabe D, de Vries AP (2011) SERIMI – resource description similarity, RDF instance matching and interlinking. In: Proceedings of the 6th International Workshop on Ontology Matching (OM2011), Bonn, 24 Oct 2011, CEUR-WS.org, CEUR Workshop Proceedings, vol 814Google Scholar
  6. Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) Dbpedia: a nucleus for a web of open data. In: Proceedings of the 6th International Semantic Web Conference (ISWC2007) and 2nd Asian Semantic Web Conference (ASWC 2007), Busan, 11–15 Nov 2007. LNCS, vol 7031. Springer, pp 722–735Google Scholar
  7. Baader F, Calvanese D, McGuinness D, Patel-Schneider P, Nardi D (eds) (2003) The description logic handbook: theory, implementation and applications. Cambridge University Press, CambridgeGoogle Scholar
  8. Batini C, Cappiello C, Francalanci C, Maurino A (2009) Methodologies for data quality assessment and improvement. ACM Comput Surv (CSUR) 41(3):16CrossRefGoogle Scholar
  9. Beckett D, Berners-Lee T, Prud’hommeaux E, Carothers G (2014) RDF 1.1 Turtle. World Wide Web Consortium. https://www.w3.org/TR/turtle/
  10. Beek W, Rietveld L, Bazoobandi HR, Wielemaker J, Schlobach S (2014) LOD laundromat: a uniform way of publishing other people’s dirty data. In: Proceedings of the 13th International Semantic Web Conference (ISWC2014), Riva del Garda, 19–23 Oct 2014. LNCS, vol 8796. Springer, pp 213–228Google Scholar
  11. Bergman MK (2018) A knowledge representation practionary: guidelines based on Charles Sanders Peirce. Springer, ChamCrossRefGoogle Scholar
  12. Berners-Lee T (2006) Linked data. https://www.w3.org/DesignIssues/LinkedData.html
  13. Berners-Lee T, Hendler J, Lassila O, et al (2001) The semantic web. Sci Am 284(5):28–37CrossRefGoogle Scholar
  14. Berners-Lee T, Connolly D, Kagal L, Scharf Y, Hendler J (2008) N3logic: a logical framework for the world wide web. Theory Pract Logic Program 8(3):249–269CrossRefGoogle Scholar
  15. Berners Lee T (2015) Five star open data. http://5stardata.info/en
  16. Bizer C, Heath T, Idehen K, Berners-Lee T (2008) Linked data on the web (LDOW2008). In: Proceedings of the 17th International Conference on World Wide Web (WWW2008), Beijing, 21–25 Apr 2008. ACM, pp 1265–1266Google Scholar
  17. Blanco R, Cambazoglu BB, Mika P, Torzec N (2013) Entity recommendations in web search. In: Proceedings of the 12th International Semantic Web Conference, Part II, Sydney, 21–25 Oct 2013. LNCS, vol 8219. SpringerGoogle Scholar
  18. Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’08), Vancouver, 10–12 June 2008. ACM, pp 1247–1250Google Scholar
  19. Bonatti PA, Decker S, Polleres A, Presutti V (2019) Knowledge graphs: new directions for knowledge representation on the semantic web (dagstuhl seminar 18371). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, vol 8, pp 29–111Google Scholar
  20. Brachman RJ (1979) On the epistemological status of semantic networks In: Findler NV (ed) Associative networks: representation and use of knowledge by computers. Academic Press, New YorkGoogle Scholar
  21. Brickley D, Guha RV, McBride B (2014) RDF schema 1.1. W3C Recommendation 25:2004–2014Google Scholar
  22. Cambria E, White B (2014) Jumping NLP curves: a review of natural language processing research. IEEE Comput Intell Mag 9(2):48–57CrossRefGoogle Scholar
  23. Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka ER, Mitchell TM (2010) Toward an architecture for never-ending language learning. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI’10), Atlanta. AAAI PressGoogle Scholar
  24. Chang CH, Kayed M, Girgis MR, Shaalan KF (2006) A survey of web information extraction systems. IEEE Trans Knowl Data Eng 18(10):1411–1428CrossRefGoogle Scholar
  25. Chu X, Morcos J, Ilyas IF, Ouzzani M, Papotti P, Tang N, Ye Y (2015) KATARA: reliable data cleaning with knowledge bases and crowdsourcing. Proc VLDB Endowment 8(12):1952–1955CrossRefGoogle Scholar
  26. Council WTT (2018) Travel & tourism: economic impact 2018 China. World Travel & Tourism Council (WTTC)Google Scholar
  27. Dell’Erba M, Fodor O, Ricci F, Werthner H (2003) Harmonise: a solution for data interoperability. In: Towards the Knowledge Society. Springer, pp 433–445Google Scholar
  28. Dietrich D, Gray J, McNamara T, Poikola A, Pollock P, Tait J, Zijlstra T et al (2009) Open data handbook. Open Knowledge International. http://opendatahandbook.org
  29. Dimou A, Vander Sande M, Colpaert P, Verborgh R, Mannens E, Van de Walle R (2014) RML: a generic language for integrated RDF mappings of heterogeneous data. In: Proceedings of the Workshop on Linked Data on the Web (LDOW’14), co-located with the 23rd International World Wide Web Conference (WWW’14), Seoul, 8 Apr 2014, CEUR-WS.orgGoogle Scholar
  30. Dong XL (2018) Challenges and innovations in building a product knowledge graph. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’18), London, 19–23 Aug 2018. ACM, pp 2869–2869Google Scholar
  31. Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K, Strohmann T, Sun S, Zhang W (2014) Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp 601–610Google Scholar
  32. Drumond L, Girardi R (2008) A survey of ontology learning procedures. In: Proceedings of the CEUR Workshop, WONTO: 3rd Workshop on Ontologies and their Applications, Salvador, Bahia, 26 Oct 2008, 427:1–13Google Scholar
  33. Faye DC, Cure O, Blin G (2012) A survey of RDF storage approaches. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées 15:11–35Google Scholar
  34. Fensel D, Bussler C (2002) The web service modeling framework WSMF. Electron Commer Res Appl 1(2):113–137CrossRefGoogle Scholar
  35. Fensel D, Musen MA (2001) The semantic web: a brain for humankind. IEEE Intell Syst 16(2):24–25CrossRefGoogle Scholar
  36. Fensel D, Erdmann M, Studer R (1997) Ontology groups: Semantically enriched subnets of the WWW. In: In Proceedings of the International Workshop Intelligent Information Integration during the 21st German Annual Conference on Artificial Intelligence, Freiburg, Sept 1997, CiteseerGoogle Scholar
  37. Fensel D, Richard V, Enrico B, Bobwielinga M (1999) UPML: a framework for knowledge system reuse. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI 99), Stockholm, July 31–Aug 6 1999, pp 16–23Google Scholar
  38. Fensel D, Angele J, Decker S, Erdmann M, Schnurr HP, Studer R, Witt A (2000) Lessons learned from applying AI to the web. Int J Cooperat Inf Syst 9(4):361–382CrossRefGoogle Scholar
  39. Fensel D, Lausen H, Polleres A, De Bruijn J, Stollberg M, Roman D, Domingue J (2006) Enabling semantic web services: the web service modeling ontology. Springer Science & Business MediaGoogle Scholar
  40. Fensel D, Kerrigan M, Zaremba M (eds) (2008) Implementing semantic web services. SpringerGoogle Scholar
  41. Fürber C, Hepp M (2010a) Using semantic web resources for data quality management. In: Proceedings of the 17th International Conference on Knowledge Engineering and Management by the Masses (EKAW2010), Lisbon, 11–15 Oct 2010. LNCS, vol 6317. Springer, pp 211–225Google Scholar
  42. Fürber C, Hepp M (2010b) Using SPARQL and SPIN for data quality management on the semantic web. In: Proceedings of the 13th International Conference on Business Information Systems (BIS2010), Berlin, 3–5 May 2010. LNBIP, vol 47. Springer, pp 35–46Google Scholar
  43. Galárraga LA, Teflioudi C, Hose K, Suchanek F (2013) AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: Proceedings of the 22nd International Conference on the World Wide Web (WWW’13), Rio de Janeiro, 13–17 May 2013. ACM, pp 413–422Google Scholar
  44. Galárraga L, Teflioudi C, Hose K, Suchanek FM (2015) Fast rule mining in ontological knowledge bases with AMIE $$+ $$+. The VLDB J – Int J Very Large Data Bases (VLDB) 24(6): 707–730CrossRefGoogle Scholar
  45. Garshol LM, Borge A (2013) Hafslund sesam–an archive on semantics. In: Proceedings of the 10th International Conference on The Semantic Web: Semantics and Big data (ESWC2013), Montpellier, France, 26–30 May 2013. LNCS. vol 7882. Springer, pp 578–592Google Scholar
  46. Gawriljuk G, Harth A, Knoblock CA, Szekely P (2016) A scalable approach to incrementally building knowledge graphs. In: Proceedings of the 20th International Conference on Theory and Practice of Digital Libraries (TPDL2016), Hannover, 5–9 Sept 2016. LNCS, vol 9819. Springer, pp 188–199Google Scholar
  47. Getoor L, Machanavajjhala A (2013) Entity resolution for big data. In: Proceedings of the 19th International Conference on Knowledge Discovery and Data Mining: Tutorial (KDD2013), Chicago, 11–14 Aug 2013. ACM, p 1527Google Scholar
  48. Giannopoulos G, Skoutas D, Maroulis T, Karagiannakis N, Athanasiou S (2014) FAGI: A framework for fusing geospatial RDF data. In: Proceedings of the Confederated International Conferences “On the Move to Meaningful Internet Systems” (OTM2014), Amantea, 27–31 Oct 2014. LNCS, vol 8841. Springer, pp 553–561Google Scholar
  49. Gil Y (2011) Interactive knowledge capture in the new millennium: how the semantic web changed everything. Knowl Eng Rev 26(1):45–51CrossRefGoogle Scholar
  50. Gomez-Perez JM, Pan JZ, Vetere G, Wu H (2017) Enterprise knowledge graph: An introduction. In: Pan JZ, Vetere G, Gomez-Perez JM, Wu H (eds) Exploiting linked data and knowledge graphs in large organisations. Springer, pp 1–14Google Scholar
  51. Gruninger M, Menzel C (2003) The process specification language (PSL) theory and applications. AI Mag 24(3):63–74Google Scholar
  52. Guha R, McCool R, Miller E (2003) Semantic search. In: Proceedings of the 12th International Conference on the World Wide Web (WWW ’03), Budapest, 20–24 May 2003. ACM, pp 700–709Google Scholar
  53. Gupta S, Kaiser G, Neistadt D, Grimm P (2003) Dom-based content extraction of html documents. In: Proceedings of the 12th international conference on World Wide Web (WWW’03), Budapest, Hungary, 20–24 May 2003. ACM, pp 207–214Google Scholar
  54. Gupta S, Szekely P, Knoblock CA, Goel A, Taheriyan M, Muslea M (2012) Karma: A system for mapping structured sources into the semantic web. In: Proceedings of the 9th Extended Semantic Web Conference (ESWC2012), Heraklion, Crete, 27–31 May 2012. LNCS, vol 7540. Springer, pp 430–434Google Scholar
  55. Gutiérrez-Cuellar J, Gómez-Pérez JM (2014) HAVAS 18 labs: a knowledge graph for innovation in the media industry. In: Proceedings of the Industry Track at the International Semantic Web Conference (ISWC-IT 2014), Riva del Garda, 19–23 Oct 2014, CEUR-WS.org, vol 1383Google Scholar
  56. Harth A, Hogan A, Delbru R, Umbrich J, O’Riain S, Decker S (2007) SWSE: answers before links! In: Proceedings of the Semantic Web Challenge 2007, Busan, Korea, November 13th, 2007. Co-located with the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference, Busan, 11–15 Nov 2007, CEUR-WS.org, vol 295, pp 137–144Google Scholar
  57. Hipp J, Güntzer U, Nakhaeizadeh G (2000) Algorithms for association rule mining- a general survey and comparison. ACM SIGKDD Exploration Newsl 2(1):58–64CrossRefGoogle Scholar
  58. Hoffart J, Suchanek FM, Berberich K, Weikum G (2013) YAGO2: A spatially and temporally enhanced knowledge base from wikipedia. Artif Intell 194:28–61CrossRefGoogle Scholar
  59. Hogan A, Decker S, Harth A (2007) Performing object consolidation on the semantic web data graph. In: Proceedings of the Workshop on Entity-Centric Approaches to Information and Knowledge Management on the Web (I3: Identity, Identifiers, Identification) co-located with the 16th International World Wide Web Conference (WWW2007), CEUR Workshop, Banff, 8 May 2007, vol 249Google Scholar
  60. Inzalkar S, Sharma J (2015) A survey on text mining-techniques and application. Int J Res Sci Eng 24:1–14Google Scholar
  61. Kärle E, Şimşek U, Fensel D (2017) semantify.it, a platform for creation, publication and distribution of semantic annotations. In: SEMAPRO 2017: The Eleventh International Conference on Advances in Semantic Processing. Curran Associates, Inc., New York, pp 22–30. http://arxiv.org/abs/1706.10067 Google Scholar
  62. Karoui L, Aufaure MA, Bennacer N (2004) Ontology discovery from web pages: application to tourism. In: Proceedings of the Workshop of Knowledge Discovery and Ontologies, Pisa, 20–24 Sept 2004, CiteseerGoogle Scholar
  63. Khare R, Çelik T (2006) Microformats: a pragmatic path to the semantic web. In: Proceedings of the 15th international conference on World Wide Web (WWW’06), Edinburgh, 23–26 May 2006. ACM, pp 865–866Google Scholar
  64. Kopeckỳ J, Vitvar T, Bournez C, Farrell J (2007) SAWSDL: semantic annotations for WSDL and XML schema. IEEE Internet Comput 11(6):60–67Google Scholar
  65. Korula N, Lattanzi S (2014) An efficient reconciliation algorithm for social networks. Proc Very Large Data Bases Endowment 7(5):377–388Google Scholar
  66. Kärle E, Simsek U, Panasiuk O, Fensel D (2018) Building an ecosystem for the tyrolean tourism knowledge graph. In: Proceedings of the International Conference on Trends in Web Engineering (ICWE2018), International Workshops, MATWEP, EnWot, KD-Web, WEOD, TourismKG: Revised Selected Papers, Caceres, 5 June 2018. Lecture Notes in Computer Science, vol 11153. Springer, pp 260–267. https://doi.org/10.1007/978-3-030-03056-8_25
  67. Langegger A, Wöß W (2009) XLWrap–querying and integrating arbitrary spreadsheets with SPARQL. In: Proceedings of the 8th International Semantic Web Conference (ISWC 2009), Chantilly, 25–29 Oct 2009. LNCS, vol 5823. Springer, pp 359–374Google Scholar
  68. Lanthaler M, Gütl C (2013) Hydra: a vocabulary for hypermedia-driven web APIs. In: Bizer C, Heath T, Berners-Lee T, Hausenblas M, Auer S (eds) Proceedings of the Workshop on Linked Data on the Web Workshop (LDOW), Rio de Janeiro, 14 May 2013, vol 996, CEUR-WS.orgGoogle Scholar
  69. Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes PN, Hellmann S, Morsey M, Van Kleef P, Auer S, et al (2015) DBpedia – a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web J 6(2):167–195CrossRefGoogle Scholar
  70. Lenat DB (1995) Cyc: a large-scale investment in knowledge infrastructure. Commun ACM 38(11):33–38CrossRefGoogle Scholar
  71. Lenat DB, Guha RV (1989) Building large knowledge-based systems; Representation and Inference in the Cyc Project, 1st edn. Addison-Wesley Longman Publishing Co., Inc.Google Scholar
  72. Lertvittayakumjorn P, Kertkeidkachorn N, Ichise R (2017) Resolving range violations in DBpedia. In: Proceedings of the Joint International Semantic Technology Conference (JIST 2017), Gold Coast, 10–12 Nov 2017. Springer, pp 121–137Google Scholar
  73. Ma L, Su Z, Pan Y, Zhang L, Liu T (2004) RStar: an RDF storage and query system for enterprise resource management. In: Proceedings of the 13th ACM international conference on Information and knowledge management, Washington, DC, 8–13 Nov 2004. ACM, pp 484–491Google Scholar
  74. Maltese V, Farazi F (2013) A semantic schema for geonames. Tech. Rep. DISI-13-004, Department of Information Engineering and Comouter Science, University of Trento, TrentoGoogle Scholar
  75. Manola F, Miller E, McBride B, et al (2004) RDF primer. W3C Recommendation 10(1–107):6Google Scholar
  76. Martin D, Burstein M, Mcdermott D, Mcilraith S, Paolucci M, Sycara K, Mcguinness DL, Sirin E, Srinivasan N (2007) Bringing semantics to web services with OWL-S. World Wide Web 10(3):243–277CrossRefGoogle Scholar
  77. Mendes PN, Mühleisen H, Bizer C (2012) Sieve: linked data quality assessment and fusion. In: Proceedings of the 2nd International Workshop on Linked Web Data Management (LWDM 2012), in conjunction EDBT2012, Berlin, 30 March 2012. Citeseer, pp 116–123Google Scholar
  78. Michelfeit J, Necaskỳ M et al (2012) Linked open data aggregation: Conflict resolution and aggregate quality. In: Proceedings of the 36th Annual IEEE Computer Software and Applications Conference Workshops (COMPSAC2012), Izmir, 16–20 July 2012. IEEE, pp 106–111Google Scholar
  79. Miles A, Bechhofer S (2009) SKOS simple knowledge organization system reference. World Wide Web Consortium. https://www.w3.org/TR/skos-reference/
  80. Mohit B (2014) Named entity recognition. In: Zitouni I (ed) Natural language processing of semitic languages. Springer, pp 221–245Google Scholar
  81. Moschitti A, Tymoshenko K, Alexopoulos P, Walker A, Nicosia M, Vetere G, Faraotti A, Monti M, Pan JZ, Wu H, et al (2017) Question answering and knowledge graphs. In: Pan JZ, Vetere G, Gomez-Perez JM, Wu H (eds) Exploiting linked data and knowledge graphs in large organisations. Springer, pp 181–212Google Scholar
  82. Motta E, Domingue J, Cabral L, Gaspari M, II I (2003) IRS-II: A framework and infrastructure for semantic web services. In: The Semantic Web – ISWC 2003, Second International Semantic Web Conference, Sanibel Island, 20–23 Oct 2003. LNCS, vol 2870. Springer, pp 306–318Google Scholar
  83. Newell A, et al (1982) The knowledge level. Artif Intell 18(1):87–127CrossRefGoogle Scholar
  84. Nickel M, Murphy K, Tresp V, Gabrilovich E (2015) A review of relational machine learning for knowledge graphs. Proc IEEE 104(1):11–33CrossRefGoogle Scholar
  85. O’connor MJ, Halaschek-Wiener C, Musen MA (2010) Mapping master: a flexible approach for mapping spreadsheets to OWL. In: 9th International Semantic Web Conference (ISWC 2010), Shanghai, 7–11 Nov 2010. LNCS, vol 6497. Springer, pp 194–208Google Scholar
  86. Pan JZ, Vetere G, Gomez-Perez JM, Wu H (eds) (2017) Exploiting linked data and knowledge graphs in large organisations. SpringerGoogle Scholar
  87. Panasiuk O, Akbar Z, Gerrier T, Fensel D (2018a) Representing geodata for tourism with schema.org. In: Grueau C, Laurini R, Ragia L (eds) Proceedings of the 4th International Conference on Geographical Information Systems Theory, Applications and Management, GISTAM 2018, Funchal, Madeira, 17–19 March 2018. SciTePress, pp 239–246. https://doi.org/10.5220/0006755102390246
  88. Panasiuk O, Akbar Z, Simsek U, Fensel D (2018b) Enabling conversational tourism assistants through schema.org mapping. In: Gangemi A, Gentile AL, Nuzzolese AG, Rudolph S, Maleshkova M, Paulheim H, Pan JZ, Alam M (eds) The Semantic Web: ESWC 2018 Satellite Events – ESWC 2018 Satellite Events, Heraklion, Crete, 3–7 June 2018. Revised Selected Papers, Lecture Notes in Computer Science, vol 11155. Springer, pp 137–141. https://doi.org/10.1007/978-3-319-98192-5_26
  89. Panasiuk O, Kärle E, Şimşek U, Fensel D (2018c) Defining tourism domains for semantic annotation of web content. e-Review of Tourism Research, Research notes from the ENTER 2018 Conference on ICT in Tourism, Jönköping, Sweden, January 24–26, 2018 9, URL https://journals.tdl.org/ertr/index.php/ertr/article/view/127
  90. Patil AA, Oundhakar SA, Sheth AP, Verma K (2004) METEOR-S web service annotation framework. In: Proceedings of the 13th international conference on World Wide Web (WWW’04), New York, 17–22 May 2004. ACM, pp 553–562Google Scholar
  91. Paulheim H (2017) Knowledge graph refinement: a survey of approaches and evaluation methods. Semantic Web 8(3):489–508CrossRefGoogle Scholar
  92. Paulheim H, Bizer C (2013) Type inference on noisy RDF data. In: Proceedings of the 12th International Semantic Web Conference (ISWC 2013), Sydney, 21–25 Oct 2013. LNCS, vol 8218, Springer, pp 510–525Google Scholar
  93. Paulheim H, Bizer C (2014) Improving the quality of linked data using statistical distributions. Int J Semantic Web Inf Syst (IJSWIS) 10(2):63–86CrossRefGoogle Scholar
  94. Paulheim H (2018a) How much is a triple? estimating the cost of knowledge graph creation. In: Proceedings of the 17th International Semantic Web Conference (ISWC2018): Posters & Demonstrations, Industry and Blue Sky Ideas Tracks, Monterey, 8–12 Oct 2018, CEUR-WS.org, CEUR Workshop Proceedings, vol 2180, http://ceur-ws.org/Vol-2180/ISWC_2018_Outrageous_Ideas_paper_10.pdf
  95. Paulheim H (2018b) Machine learning with and for semantic web knowledge graphs. In: d’Amato C, Theobald M (eds) Reasoning Web. Learning, Uncertainty, Streaming, and Scalability – 14th International Summer School 2018, Esch-sur-Alzette, Luxembourg, 22–26 Sept 2018. Tutorial Lectures, Springer, pp 110–141Google Scholar
  96. Pereira RL, Sousa PC, Barata R, Oliveira A, Monsieur G (2015) Citysdk tourism api-building value around open data. J Internet Serv Appl 6(1):24CrossRefGoogle Scholar
  97. Quimbaya AP, Muñoz O, Londoño D, Bohórquez R, García OM, González RA, Amortegui MP, Rodriguez S, Bustamante A (2014) An executable knowledge base for clinical practice guideline rules. Proc Technol 16:1446–1455CrossRefGoogle Scholar
  98. Rekatsinas T, Chu X, Ilyas IF, Ré C (2017) Holoclean: Holistic data repairs with probabilistic inference. Proc the Very Large Data Bases Endowment (PVLDB) 10(11):1190–1201Google Scholar
  99. Roman D, Kopeckỳ J, Vitvar T, Domingue J, Fensel D (2015) WSMO-Lite and hRESTS: lightweight semantic annotations for web services and RESTful APIs. J Web Semantics 31: 39–58Google Scholar
  100. Sabou M, Arsal I, Braşoveanu AM (2013) Tourmislod: a tourism linked data set. Semantic Web 4(3):271–276CrossRefGoogle Scholar
  101. Schreiber G (2013) Knowledge acquisition and the web. Int J Hum-Comput Stud 71(2):206–210CrossRefGoogle Scholar
  102. Schreiber G, Akkermans H, Anjewierden A, Shadbolt N, de Hoog R, Van de Velde W, Shadbolt NR, Wielinga B (2000) Knowledge engineering and management: the CommonKADS methodology. The MIT Press, CambridgeGoogle Scholar
  103. Schultz A, Matteini A, Isele R, Mendes PN, Bizer C, Becker C (2012) LDIF – a framework for large-scale linked data integration. In: 21st International World Wide Web Conference (WWW 2012), Developers Track, Lyon, 18–20 Apr 2012Google Scholar
  104. Shadbolt N, Smart PR, Wilson J, Sharples S (2015) Knowledge elicitation. In: Wilson J, Sharples S (eds) Evaluation of human work, 4th edn. CRC Press, Boca Raton, pp 163–200Google Scholar
  105. Shehata S, Karray F, Kamel M (2009) An efficient concept-based mining model for enhancing text clustering. IEEE Trans Knowl Data Eng 22(10):1360–1371CrossRefGoogle Scholar
  106. Silwattananusarn T, Tuamsuk K (2012) Data mining and its applications for knowledge management: a literature review from 2007 to 2012. Int J Data Min Knowl Manag Process 2(5). https://arxiv.org/abs/1210.2872
  107. Simon HA (1957) Models of man, nueva yorkGoogle Scholar
  108. Şimşek U, Fensel D (2018) Now we are talking! Flexible and open goal-oriented dialogue systems for accessing touristic services. In: Research Notes from the ENTER 2018 Conference on ICT in Tourism, Jönköping, Sweden, 24–26 Jan 2018. https://journals.tdl.org/ertr/index.php/ertr/article/view/126
  109. Şimşek U, Kärle E, Fensel D (2018a) Machine readable web APIs with schema.org action annotations. Proc Comput Sci 137:255–261CrossRefGoogle Scholar
  110. Şimşek U, Kärle E, Holzknecht O, Fensel D (2018b) Domain specific semantic validation of schema.org annotations. In: Petrenko AK, Voronkov A (eds) Perspectives of system informatics. Springer International Publishing, Cham, pp 417–429CrossRefGoogle Scholar
  111. Şimşek U, Kärle E, Fensel D (2019) RocketRML – a NodeJS implementation of a use-case specific RML mapper. http://arxiv.org/abs/1903.04969
  112. Singhal A (2012) Introducing the knowledge graph: things, not strings. Official Google Blog 5. https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
  113. Sleeman J, Finin T (2013) Type prediction for efficient coreference resolution in heterogeneous semantic graphs. In: Proceedings of the 7th International Conference on Semantic Computing (ICSC2013). IEEE Computer Society, Irvine, 16–18 Sept 2013Google Scholar
  114. Sleeman J, Finin T, Joshi A (2015) Topic modeling for RDF graphs. In: Proceedings of the 3rd International Workshop on Linked Data for Information Extraction (LD4IE2015) co-located with the 14th International Semantic Web Conference (ISWC 2015), CEUR Workshop, Bethlehem, 12 Oct 2015, CEUR-WS.org, CEUR Workshop Proceedings, vol 1467, pp 48–62Google Scholar
  115. Socher R, Chen D, Manning CD, Ng A (2013) Reasoning with neural tensor networks for knowledge base completion. In: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13), Lake Tahoe, 5–10 Dec 2013, vol 1, pp 926–934Google Scholar
  116. Sporny M, Longley D, Kellogg G, Lanthaler M, Lindström N (2014) JSON-LD 1.0. W3C Recommendation 16:41. https://www.w3.org/TR/json-ld/
  117. Stearns MQ, Price C, Spackman KA, Wang AY (2001) SNOMED clinical terms: overview of the development process and project status. In: Proceedings of the AMIA Symposium, Washington DC, USA, 11–15 Nov 2001, American Medical Informatics Association, p 662Google Scholar
  118. Stegmaier F, Gröbner U, Döller M, Kosch H, Baese G (2009) Evaluation of current RDF database solutions. In: Proceedings of the 10th International Workshop on Semantic Multimedia Database Technologies (SeMuDaTe) at the 4th International Conference on Semantics And Digital Media Technologies (SAMT), Graz, 2 Dec 2009, pp. 39–55Google Scholar
  119. Studer R, Benjamins VR, Fensel D (1998) Knowledge engineering: principles and methods. Data Knowl Eng 25(1–2):161–197CrossRefGoogle Scholar
  120. Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of semantic knowledge. In: Proceedings of the 16th International World Wide Web Conference (WWW2007), Banff, Canada, 8–12 May 2007. ACM, pp 697–706. https://doi.org/10.1145/1242572.1242667
  121. Swartz A (2002) Musicbrainz: a semantic web service. IEEE Intell Syst 17(1):76–77CrossRefGoogle Scholar
  122. Sánchez D, Moreno A (2006) A methodology for knowledge acquisition from the web. Int J Knowl-Based Intell Eng Syst 10(6):453–475Google Scholar
  123. Tandon N, De Melo G, Suchanek F, Weikum G (2014) WebChild: harvesting and organizing commonsense knowledge from the web. In: Proceedings of the 7th ACM international conference on Web search and data mining (WSDM 2014), New York, 24–28 Feb 2014. ACM, pp 523–532Google Scholar
  124. Töpper G, Knuth M, Sack H (2012) Dbpedia ontology enrichment for inconsistency detection. In: Proceedings of the 8th International Conference on Semantic Systems (I-SEMANTICS ’12), Graz, 5–7 Sept 2012. ACM, pp 33–40Google Scholar
  125. Van Deursen D, Poppe C, Martens G, Mannens E, Van de Walle R (2008) XML to RDF conversion: a generic approach. In: Proceedings of the 4rd International Conference on Automated solutions for Cross Media Content and Multi-Channel Distribution (AXMEDIS’08), Florence, 17–19 Nov 2008. IEEE, pp 138–144Google Scholar
  126. Verborgh R, Steiner T, Van Deursen D, De Roo J, Van de Walle R, Vallés JG (2013) Capturing the functionality of web services with functional descriptions. Multimed Tools Appl 64(2):365–387CrossRefGoogle Scholar
  127. Verborgh R, Harth A, Maleshkova M, Stadtmüller S, Steiner T, Taheriyan M, Van de Walle R (2014) Survey of semantic description of REST APIs. In: Pautasso C, Wilde E, Alarcon R (eds) REST: Advanced Research Topics and Practical Applications. Springer, pp 69–89Google Scholar
  128. Villazon-Terrazas B, Garcia-Santa N, Ren Y, Faraotti A, Wu H, Zhao Y, Vetere G, Pan JZ (2017a) Knowledge graph foundations. In: Pan JZ, Vetere G, Gomez-Perez JM, Wu H (eds) Exploiting Linked Data and Knowledge Graphs in Large Organisations. Springer, pp 17–55Google Scholar
  129. Villazon-Terrazas B, Garcia-Santa N, Ren Y, Srinivas K, Rodriguez-Muro M, Alexopoulos P, Pan JZ (2017b) Construction of enterprise knowledge graphs (I). In: Pan JZ, Vetere G, Gomez-Perez JM, Wu H (eds) Exploiting Linked Data and Knowledge Graphs in Large Organisations. Springer, pp 87–116Google Scholar
  130. Volz J, Bizer C, Gaedke M, Kobilarov G (2009) Silk – A link discovery framework for the web of data. In: Proceedings of the WWW2009 Workshop on Linked Data on the Web, LDOW, Madrid, vol 538, CiteseerGoogle Scholar
  131. Vrandečić D, Krötzsch M (2014) Wikidata: a free collaborative knowledge base. Commun ACM 57(10):78–85CrossRefGoogle Scholar
  132. Winkler WE (2006) Overview of record linkage and current research directions. Research report series: statistics #2006-2, Bureau of the Census, USA. https://www.census.gov/srd/papers/pdf/rrs2006-02.pdf
  133. Zaveri A, Kontokostas D, Sherif MA, Bühmann L, Morsey M, Auer S, Lehmann J (2013) User-driven quality evaluation of DBpedia. In: Proceedings of the 9th International Conference on Semantic Systems (I-SEMANTICS ’13), Graz, 4–6 Sept 2013. ACM, pp 97–104Google Scholar
  134. Zaveri A, Dastgheib S, Wu C, Whetzel T, Verborgh R, Avillach P, Korodi G, Terryn R, Jagodnik K, Assis P, et al (2017) SmartAPI: Towards a more intelligent network of web APIs. In: Proceedings of the 14th European Semantic Web Conference (ESWC 2017), Portoroz, Sovenia, May 28–June 1. LNCS, vol 10250. Springer, pp 154–169Google Scholar

Authors and Affiliations

  1. 1.Semantic Technology InstituteUniversity of InnsbruckInnsbruckAustria
  2. 2.Onlim GmbHTelfsAustria
  3. 3.Semantic Technology InstituteUniversity of InnsbruckInnsbruckAustria
  4. 4.Onlim GmbHTelfsAustria

Section editors and affiliations

  • Wolfram Höpken
    • 1
  1. 1.Institute of Digital TransformationUniversity of Applied Sciences Ravensburg-WeingartenWeingartenGermany

Personalised recommendations