Skip to main content

Deep CNN-Based Face Recognition

  • Living reference work entry
  • First Online:
Computer Vision

Synonyms

Face identification; Face recognition; Face verification

Definition

Automatic face recognition is the problem of identifying a person from an image or a video. The problem of face recognition can be divided into face identification and face verification. The standard approach for training a CNN for solving these problems include four steps: face detection, alignment, representation, and classification (Fig. 1). Identification is the problem of assigning an identity to an image from a list of identities. From another perspective, this can be considered as trying to retrieve the best matching face from a gallery for a given probe image. On the other hand, face verification involves verifying whether two face images are of the same person. This is usually performed by computing the similarity between feature representations of the two faces. Both identification and verification have benefited immensely from developments in deep learning algorithms and more advanced CNN...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Huang GB, Mattar M, Berg T, Learned-Miller E (2008) Labeled faces in the wild: a database forstudying face recognition in unconstrained environments. In: Workshop on faces in real-life images: detection, alignment, and recognition

    Google Scholar 

  2. Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face attributes in the wild. In: IEEE international conference on computer vision, pp 3730–3738

    Google Scholar 

  3. Yi D, Lei Z, Liao S, Li SZ (2014) Learning face representation from scratch. arXiv preprint arXiv:1411.7923

    Google Scholar 

  4. Bansal A, Nanduri A, Castillo C, Ranjan R, Chellappa R (2016) UMDFaces: an annotated face dataset for training deep networks. arXiv preprint arXiv:1611.01484

    Google Scholar 

  5. Guo Y, Zhang L, Hu Y, He X, Gao J (2016) MS-celeb-1M: a dataset and benchmark for large-scale face recognition. In: European conference on computer vision. Springer, pp 87–102

    Google Scholar 

  6. Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. In: BMVC, vol 1, p 6

    Google Scholar 

  7. Cao Q, Shen L, Xie W, Parkhi OM, Zisserman A (2018) VGGFace2: a dataset for recognising faces across pose and age. In: Automatic face & gesture recognition (FG 2018), 2018 13th IEEE international conference on. IEEE, pp 67–74

    Google Scholar 

  8. Kushwaha V, Singh M, Singh R, Vatsa M, Ratha N, Chellappa R (2018) Disguised faces in the wild. In: IEEE conference on computer vision and pattern recognition workshops, vol 8

    Google Scholar 

  9. Klare BF, Taborsky E, Blanton A, Cheney J, Allen K, Grother P, Mah A, Burge M, Jain AK (2015) Pushing the frontiers of unconstrained face detection and recognition: Iarpa Janus benchmark a. In: IEEE conference on computer vision and pattern recognition (CVPR), 13:4

    Google Scholar 

  10. Whitelam C, Taborsky E, Blanton A, Maze B, Adams JC, Miller T, Kalka ND, Jain AK, Duncan JA, Allen K et al (2017) Iarpa Janus benchmark-b face dataset. In: CVPR workshops, vol 2, p 6

    Google Scholar 

  11. Maze B, Adams J, Duncan JA, Kalka N, Miller T, Otto C, Jain AK, Niggel WT, Anderson J, Cheney J et al (2018) Iarpa Janus benchmark–c: face dataset and protocol. In: 11th IAPR international conference on biometrics

    Google Scholar 

  12. Kalka ND, Maze B, Duncan JA, O’Connor K, Elliott S, Hebert K, Bryan J, Jain AK (2018) IJB–S: Iarpa Janus surveillance video benchmark. In: 2018 IEEE 9th international conference on biometrics theory, applications and systems (BTAS). IEEE, pp 1–9

    Google Scholar 

  13. Kemelmacher-Shlizerman I, Seitz SM, Miller D, Brossard E (2016) The megaface benchmark: 1 million faces for recognition at scale. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 4873–4882

    Google Scholar 

  14. Wolf L, Hassner T, Maoz I (2011) Face recognition in unconstrained videos with matched background similarity. In: Computer vision and pattern recognition (CVPR), 2011 IEEE conference on. IEEE, pp 529–534

    Google Scholar 

  15. Bansal A, Castillo C, Ranjan R, Chellappa R (2017) The do’s and don’ts for CNN-based face verification. In: Proceedings of the IEEE international conference on computer vision, pp 2545–2554

    Google Scholar 

  16. Yang S, Luo P, Loy C-C, Tang X (2016) Wider face: a face detection benchmark. In: IEEE conference on computer vision and pattern recognition, pp 5525–5533

    Google Scholar 

  17. Jain V, Learned-Miller E (2010) FDDB: a benchmark for face detection in unconstrained settings. Technical Report UM-CS-2010-009, University of Massachusetts, Amherst

    Google Scholar 

  18. Zhu X, Ramanan D (2012) Face detection, pose estimation, and landmark localization in the wild. In: IEEE conference on computer vision and pattern recognition, pp 2879–2886, June 2012

    Google Scholar 

  19. Sagonas C, Tzimiropoulos G, Zafeiriou S, Pantic M (2013) 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: Proceedings of the IEEE international conference on computer vision workshops, pp 397–403

    Google Scholar 

  20. Belhumeur PN, Jacobs DW, Kriegman DJ, Kumar N (2011) Localizing parts of faces using a consensus of exemplars. In: IEEE conference on computer vision and pattern recognition, pp 545–552

    Google Scholar 

  21. Kostinger M, Wohlhart P, Roth PM, Bischof H (2011) Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: IEEE international conference on computer vision workshops, pp 2144–2151, Nov 2011

    Google Scholar 

  22. Faltemier TC, Bowyer KW, Flynn PJ (2007) Using a multi-instance enrollment representation to improve 3D face recognition. In: Biometrics: theory, applications, and systems, 2007. BTAS 2007. First IEEE international conference on. IEEE, pp. 1–6

    Google Scholar 

  23. Levi G, Hassner T (2015) Age and gender classification using convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 34–42

    Google Scholar 

  24. Rothe R, Timofte R, Van Gool L (2015) Dex: deep expectation of apparent age from a single image. In: IEEE international conference on computer vision workshop on ChaLearn looking at people, pp 10–15

    Google Scholar 

  25. Hand EM, Castillo C, Chellappa R (2018) Doing the best we can with what we have: multi-label balancing with selective learning for attribute prediction. In: AAAI conference on artificial intelligence. AAAI

    Google Scholar 

  26. Bansal A, Venkatesh KS (2015) People counting in high density crowds from still images. arXiv preprint arXiv:1507.08445

    Google Scholar 

  27. Sindagi VA, Patel VM (2017) CNN-based cascaded multi-task learning of high-level prior and density estimation for crowd counting. In: Advanced video and signal based surveillance (AVSS), 2017 14th IEEE international conference on. IEEE, pp 1–6

    Google Scholar 

  28. Uijlings JR, van de Sande KE, Gevers T, Smeulders AW (2013) Selective search for object recognition. Int J Comput Vis 104(2):154–171

    Article  Google Scholar 

  29. Zitnick CL, Dollár P (2014) Edge boxes: locating object proposals from edges. In: European conference on computer vision. Springer, pp 391–405

    Google Scholar 

  30. Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, pp 91–99

    Google Scholar 

  31. Ranjan R, Sankaranarayanan S, Castillo CD, Chellappa R (2017) An all-in-one convolutional neural network for face analysis. In: IEEE international conference on automatic face and gesture recognition (FG)

    Google Scholar 

  32. Ranjan R, Patel V, Chellappa R (2016) Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. arXiv preprint arXiv:1603.01249

    Google Scholar 

  33. Hu P, Ramanan D (2016) Finding tiny faces. arXiv preprint arXiv:1612.04402

    Google Scholar 

  34. Chen D, Hua G, Wen F, Sun J (2016) Supervised transformer network for efficient face detection. In: European conference on computer vision. Springer, pp 122–138

    Google Scholar 

  35. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) SSD: single shot multibox detector. In: European conference on computer vision (ECCV), pp 21–37

    Chapter  Google Scholar 

  36. Redmon J, Divvala S, Girshick R, Farhadi A (2015) You only look once: unified, real-time object detection. arXiv preprint arXiv:1506.02640

    Google Scholar 

  37. Redmon J, Farhadi A (2017) Yolo9000: better, faster, stronger. arXiv preprint

    Google Scholar 

  38. Ranjan R, Bansal A, Zheng J, Xu H, Gleason J, Lu B, Nanduri A, Chen J-C, Castillo CD, Chellappa R (2018) A fast and accurate system for face detection, identification, and verification. arXiv preprint arXiv:1809.07586

    Google Scholar 

  39. Najibi M, Samangouei P, Chellappa R, Davis L (2017) SSH: single stage headless face detector. arXiv preprint arXiv:1708.03979

    Google Scholar 

  40. Li H, Lin Z, Shen X, Brandt J, Hua G (2015) A convolutional neural network cascade for face detection. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 5325–5334

    Google Scholar 

  41. Yang S, Xiong Y, Loy CC, Tang X (2017) Face detection through scale-friendly deep convolutional networks. arXiv preprint arXiv:1706.02863

    Google Scholar 

  42. Zhang S, Zhu X, Lei Z, Shi H, Wang X, Li SZ (2017) S3fd: single shot scale-invariant face detector. arXiv preprint arXiv:1708.05237

    Google Scholar 

  43. Wang N, Gao X, Tao D, Yang H, Li X (2017) Facial feature point detection: a comprehensive survey. Neurocomputing 275:50–65

    Article  Google Scholar 

  44. Ranjan R, Bansal A, Xu H, Sankaranarayanan S, Chen J-C, Castillo CD, Chellappa R (2018) Crystal loss and quality pooling for unconstrained face verification and recognition. arXiv preprint arXiv:1804.01159

    Google Scholar 

  45. Liu W, Wen Y, Yu Z, Li M, Raj B, Song L (2017) Sphereface: deep hypersphere embedding for face recognition. In: IEEE international conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  46. Wang H, Wang Y, Zhou Z, Ji X, Gong D, Zhou J, Li Z, Liu W (2018) Cosface: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5265–5274

    Google Scholar 

  47. Deng J, Guo J, Zafeiriou S (2018) Arcface: additive angular margin loss for deep face recognition. arXiv preprint arXiv:1801.07698

    Google Scholar 

  48. Chen B, Deng W, Du J (2017) Noisy softmax: improving the generalization ability of DCNN via postponing the early softmax saturation. In: The IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  49. Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: European conference on computer vision (ECCV), pp 499–515

    Chapter  Google Scholar 

  50. Wu Y, Liu H, Li J, Fu Y (2017) Deep face recognition with center invariant loss. In: Proceedings of the on thematic workshops of ACM multimedia 2017. ACM, pp 408–414

    Google Scholar 

  51. Zhang X, Fang Z, Wen Y, Li Z, Qiao Y (2017) Range loss for deep face recognition with long-tailed training data. In: 2017 IEEE international conference on computer vision (ICCV). IEEE, pp 5419–5428

    Google Scholar 

  52. Qi X, Zhang L (2018) Face recognition via centralized coordinate learning. arXiv preprint arXiv:1801.05678

    Google Scholar 

  53. Zheng Y, Pal DK, Savvides M (2018) Ring loss: convex feature normalization for face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5089–5097

    Google Scholar 

  54. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 815–823

    Google Scholar 

  55. Sun Y, Wang X, Tang X (2014) Deep learning face representation from predicting 10000 classes. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1891–1898

    Google Scholar 

  56. Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1701–1708

    Google Scholar 

  57. Liu J, Deng Y, Bai T, Wei Z, Huang C (2015) Targeting ultimate accuracy: face recognition via deep embedding. arXiv preprint arXiv:1506.07310

    Google Scholar 

  58. Bansal A, Ranjan R, Castillo CD, Chellappa R (2018) Deep features for recognizing disguised faces in the wild. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). IEEE, pp 10–106

    Google Scholar 

  59. Lin W-A, Chen J-C, Ranjan R, Bansal A, Sankaranarayanan S, Castillo CD, Chellappa R (2018) Proximity-aware hierarchical clustering of unconstrained faces. Image Vis Comput 77:33–44

    Article  Google Scholar 

  60. Sun Y, Chen Y, Wang X, Tang X (2014) Deep learning face representation by joint identification-verification. In: Advances in neural information processing systems, pp 1988–1996

    Google Scholar 

  61. Masi I, Tran AT, Leksut JT, Hassner T, Medioni G (2016) Do we really need to collect millions of faces for effective face recognition? arXiv preprint arXiv:1603.07057

    Google Scholar 

  62. Wang D, Otto C, Jain AK (2015) Face search at scale: 80 million gallery. arXiv preprint arXiv:1507.07242

    Google Scholar 

  63. Masi I, Rawls S, Medioni G, Natarajan P (2016) Pose-aware face recognition in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4838–4846

    Google Scholar 

  64. AbdAlmageed W, Wu Y, Rawls S, Harel S, Hassne T, Masi I, Choi J, Lekust J, Kim J, Natarajana P, Nevatia R, Medioni G (2016) Face recognition using deep multi-pose representations. In: IEEE winter conference on applications of computer vision (WACV)

    Google Scholar 

  65. Yang J, Ren P, Chen D, Wen F, Li H, Hua G (2016) Neural aggregation network for video face recognition. arXiv preprint arXiv:1603.05474

    Google Scholar 

  66. Chang F-J, Tran AT, Hassner T, Masi I, Nevatia R, Medioni G (2017) Faceposenet: making a case for landmark-free face alignment. In: Computer vision workshop (ICCVW), 2017 IEEE international conference on. IEEE, pp 1599–1608

    Google Scholar 

  67. Xiong L, Jayashree K, Zhao J, Feng J, Pranata S, Shen S (2017) A good practice towards top performance of face recognition: transferred deep feature fusion. arXiv preprint arXiv:1704.00438

    Google Scholar 

  68. Wu X, He R, Sun Z, Tan T (2018) A light CNN for deep face representation with noisy labels. IEEE Trans Inf Forensics Secur 13(11):2884–2896

    Article  Google Scholar 

  69. Merler M, Ratha N, Feris RS, Smith JR (2019) Diversity in faces. arXiv preprint arXiv:1901.10436

    Google Scholar 

Download references

Acknowledgements

This research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA R&D Contract No. 2014-14071600012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankan Bansal .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bansal, A., Ranjan, R., Castillo, C.D., Chellappa, R. (2020). Deep CNN-Based Face Recognition. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_880-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_880-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics