Skip to main content

Learning from a Neuroscience Perspective

  • Living reference work entry
  • First Online:
Computer Vision
  • 279 Accesses

Related Concepts

Definition

This entry gives an overview of learning from a neuroscience perspective by highlighting some key chronological findings in neuroscience that have given rise to various theories of learning and have particularly inspired major developments in artificial intelligence.

Background

Learning has been a central question in psychology and neuroscience, spanning various theories and explanations from the behavioral level to the neuronal scale. Even though many of these theories are strengthened by experimental evidence, understanding how learning is performed by the brain is still an open problem and subject of numerous ongoing research efforts. Nevertheless, the neuroscience perspective on learning has heavily influenced artificial intelligence and machine learning, hallmarked by early instances such as the Perceptron, to the more recent advent of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Minsky M (1961) Steps toward artificial intelligence. Proc IRE 49(1):8–30

    Article  MathSciNet  Google Scholar 

  2. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Cambridge

    MATH  Google Scholar 

  3. Bellman R (1952) On the theory of dynamic programming. Proc Nat Acad Sci USA 38(8):716

    Article  MathSciNet  MATH  Google Scholar 

  4. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27

    Article  MathSciNet  Google Scholar 

  5. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24(1):167–202

    Article  Google Scholar 

  6. Izhikevich EM (2007) Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb Cortex 17(10):2443–2452

    Article  Google Scholar 

  7. Eshel N, Bukwich M, Rao V, Hemmelder V, Tian J, Uchida N (2015) Arithmetic and local circuitry underlying dopamine prediction errors. Nature 525(7568):243

    Article  Google Scholar 

  8. Bear MF, Connors BW, Paradiso MA (2007) Neuroscience: exploring the brain. Lippincott Williams & Wilkins Publishers, Philadelphia

    Google Scholar 

  9. Adrian ED (1926) The impulses produced by sensory nerve endings. J Physiol 61(1):49–72

    Article  Google Scholar 

  10. O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the eeg theta rhythm. Hippocampus 3(3):317–330

    Article  Google Scholar 

  11. Hebb DO (1949) The organization of behavior; a neuropsychological theory. Wiley, New York

    Google Scholar 

  12. Gerstner W, Kistler WM (2002) Mathematical formulations of hebbian learning. Biol Cybern 87(5-6):404–415

    Article  MATH  Google Scholar 

  13. Gerstner W, Kempter R, Leo van Hemmen J, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383(6595):76

    Article  Google Scholar 

  14. Song S, Miller KD, Abbott LF (2000) Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3(9):919

    Article  Google Scholar 

  15. Caporale N, Dan Y (2008) Spike timing–dependent plasticity: a hebbian learning rule. Annu Rev Neurosci 31:25–46

    Article  Google Scholar 

  16. Dan Y, Poo M-M (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44(1):23–30

    Article  Google Scholar 

  17. Dan Y, Poo M-M (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86(3):1033–1048

    Article  Google Scholar 

  18. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48

    Article  Google Scholar 

  19. Indiveri G, Chicca E, Douglas R (2006) A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Netw 17(1):211–221

    Article  Google Scholar 

  20. James CD, Aimone JB, Miner NE, Vineyard CM, Rothganger FH, Carlson KD, Mulder SA, Draelos TJ, Faust A, Marinella MJ et al (2017) A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications. Biolog Inspired Cogn Architect 19:49–64

    Article  Google Scholar 

  21. Davies M, Srinivasa N, Lin T-H, Chinya G, Cao Y, Choday SH, Dimou G, Joshi P, Imam N, Jain S et al (2018) Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1):82–99

    Article  Google Scholar 

  22. Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148(3):574–591

    Article  Google Scholar 

  23. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160(1):106–154

    Article  Google Scholar 

  24. Aertsen AMHJ, Johannesma PIM (1981) The spectro-temporal receptive field. Biol Cybern 42(2):133–143

    Article  MATH  Google Scholar 

  25. Thach Jr WT (1967) Somatosensory receptive fields of single units in cat cerebellar cortex. J Neurophysiol 30(4):675–696

    Article  Google Scholar 

  26. Rosenblatt F (1961) Principles of neurodynamics. Perceptrons and the theory of brain mechanisms. Technical report, Cornell Aeronautical Lab Inc, Buffalo

    Book  MATH  Google Scholar 

  27. LeCun Y, Bottou L, Bengio Y, Haffner P et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  28. Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ (2014) Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc Natl Acad Sci 111(23):8619–8624

    Article  Google Scholar 

  29. Mazzoni P, Andersen RA, Jordan MI (1991) A more biologically plausible learning rule for neural networks. Proc Nat Acad Sci 88(10):4433–4437

    Article  Google Scholar 

  30. Pehlevan C, Mohan S, Chklovskii DB (2017) Blind nonnegative source separation using biological neural networks. Neural Comput 29(11):2925–2954

    Article  MathSciNet  MATH  Google Scholar 

  31. Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, Rasmussen D (2012) A large-scale model of the functioning brain. Science 338(6111):1202–1205

    Article  Google Scholar 

  32. Eliasmith C, Anderson CH (2004) Neural engineering: computation, representation, and dynamics in neurobiological systems. MIT Press, Cambridge

    Google Scholar 

  33. Denève S, Alemi A, Bourdoukan R (2017) The brain as an efficient and robust adaptive learner. Neuron 94(5):969–977

    Article  Google Scholar 

  34. Moore JJ, Ravassard PM, Ho D, Acharya L, Kees AL, Vuong C, Mehta MR (2017) Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats. Science 355(6331):eaaj1497

    Article  Google Scholar 

  35. Frank AC, Huang S, Zhou M, Gdalyahu A, Kastellakis G, Silva TK, Lu E, Wen X, Poirazi P, Trachtenberg JT et al (2018) Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory. Nat Commun 9(1):422

    Article  Google Scholar 

  36. Haga T, Fukai T (2018) Dendritic processing of spontaneous neuronal sequences for single-trial learning. Sci Rep 8(1):15166

    Article  Google Scholar 

  37. Douglas RJ, Koch C, Mahowald M, Martin KA, Suarez HH (1995) Recurrent excitation in neocortical circuits. Science 269(5226):981–985

    Article  Google Scholar 

  38. Sussillo D, Abbott LF (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4):544–557

    Article  Google Scholar 

  39. Bagur S, Averseng M, Elgueda D, David S, Fritz J, Yin P, Shamma S, Boubenec Y, Ostojic S (2018) Go/no-go task engagement enhances population representation of target stimuli in primary auditory cortex. Nat Commun 9(1):2529

    Article  Google Scholar 

  40. Francis NA, Winkowski DE, Sheikhattar A, Armengol K, Babadi B, Kanold PO (2018) Small networks encode decision-making in primary auditory cortex. Neuron 97(4):885–897

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behtash Babadi .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Babadi, B. (2020). Learning from a Neuroscience Perspective. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_823-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_823-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics