Skip to main content

Optimal Estimation

  • Living reference work entry
  • First Online:
Computer Vision
  • 195 Accesses

Synonyms

Optimal parameter estimation

Related Concepts

Maximum Likelihood Estimation Ellipse Fitting Fundamental Matrix Homography KCR Lower Bound Hyper-Renormalization

Definition

Optimal estimation in the computer vision context refers to estimating the parameters that describe the underlying problem from noisy observation. The estimation is done according to a given criterion of optimality, for which maximum likelihood is widely accepted. If Gaussian noise is assumed, it reduces to minimizing the Mahalanobis distance. If furthermore the Gaussian noise has a homogeneous and isotropic distribution, the procedure reduces to minimizing what is called the reprojection error.

Background

One of the central tasks of computer vision is the extraction of 2D/3D geometric information from noisy image data. Here, the term image data refers to values extracted from images by image processing operations such as edge filters and interest point detectors. Image data are said to be noisyin the sense...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Chernov N, Lesort C (2004) Statistical efficiency of curve fitting algorithms. Comput Stat Data Anal 47(4):713–728

    Article  MathSciNet  Google Scholar 

  2. Kanatani K (2008) Statistical optimization for geometric fitting: theoretical accuracy analysis and high order error analysis. Int J Comput Vis 80(2):167–188

    Article  MathSciNet  Google Scholar 

  3. Neyman J, Scott EL (1948) Consistent estimates based on partially consistent observations. Econometrica 16(1):1–32

    Article  MathSciNet  Google Scholar 

  4. Kanatani K, Sugaya Y, Kanazawa Y (2016a) Ellipse fitting for computer vision: implementation and applications. Morgan Claypool, San Rafael

    Google Scholar 

  5. Kanatani K, Sugaya Y, Kanazawa Y (2016b) Guide to 3D vision computation: geometric analysis and implementation. Springer, Cham

    Book  Google Scholar 

  6. Sampson PD (1982) Fitting conic sections to “very scattered” data: an iterative refinement of the Bookstein algorithm. Comput Graphics Image Process 18(1):97–108

    Article  Google Scholar 

  7. Chojnacki W, Brooks MJ, van den Hengel A, Gawley D (2000) On the fitting of surfaces to data with covariances. IEEE Trans Patt Anal Mach Intell 22(11):1294–1303

    Article  Google Scholar 

  8. Leedan Y, Meer P (2000) Heteroscedastic regression in computer vision: problems with bilinear constraint. Int J Comput Vis 37(2):127–150

    Article  Google Scholar 

  9. Kanatani K, Sugaya Y (2010) Unified computation of strict maximum likelihood for geometric fitting. J Math Imaging Vis 38(1):1–13

    Article  MathSciNet  Google Scholar 

  10. Taubin G (1991) Estimation of planar curves, surfaces, and non-planar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans Patt Anal Mach Intell 13(11):1115–1138

    Article  Google Scholar 

  11. Kanatani K, Rangarajan P, Sugaya Y, Niitsuma H (2011) HyperLS for parameter estimation in geometric fitting. IPSJ Trans Comput Vis Appl 3:80–94

    Article  Google Scholar 

  12. Kanatani K (1993) Renormalization for unbiased estimation. In: Proceedings of 4th international conference on computer vision, Berlin, pp 599–606

    Google Scholar 

  13. Kanatani K, Al-Sharadqah A, Chernov N, Sugaya Y (2014) Hyper-renormalization: non-minimization approach for geometric estimation. IPSJ Trans Comput Vis Appl 6:143–149

    Article  Google Scholar 

  14. Kanatani K, Sugaya Y (2013) Hyperaccurate correction of maximum likelihood for geometric estimation. IPSJ Trans Comp Vis Appl 5:19–29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Kanatani .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kanatani, K. (2020). Optimal Estimation. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_714-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_714-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics