Skip to main content

Gradient Vector Flow

  • Living reference work entry
  • First Online:

Synonyms

GVF

Related Concepts

Definition

Gradient vector flow is the vector field that is produced by a process that smooths and diffuses an input vector field and is usually used to create a vector field that points to object edges from a distance.

Background

Finding objects or homogeneous regions in images is a process known as image segmentation. In many applications, the locations of object edges can be estimated using local operators that yield a new image called an edge map. The edge map can then be used to guide a deformable model, sometimes called an active contour or a snake, so that it passes through the edge map in a smooth way, therefore defining the object itself.

A common way to encourage a deformable model to move toward the edge map is to take the spatial gradient of the edge map, yielding a vector field. Since the edge map has its...

This is a preview of subscription content, log in via an institution.

References

  1. Hassouna MS, Farag AY (2009) Variational curve skeletons using gradient vector flow. IEEE Trans Pattern Anal Mach Intell 31(12):2257–2274

    Article  Google Scholar 

  2. Yu H, Chua CS (2006) GVF-based anisotropic diffusion models. IEEE Trans Image Process 15(6): 1517–1524

    Article  Google Scholar 

  3. Han X, Pham DL, Tosun D, Rettmann ME, Xu C, Prince JL, et al. (2004) CRUISE: cortical reconstruction using implicit surface evolution. NeuroImage 23(3):997–1012

    Article  Google Scholar 

  4. Miri MS, Robles VA, Abràmoff MD, Kwon YH, Garvin MK (2017) Incorporation of gradient vector flow field in a multimodal graph-theoretic approach for segmenting the internal limiting membrane from glaucomatous optic nerve head-centered SD-OCT volumes. Comput Med Imaging Graph 55:87–94

    Article  Google Scholar 

  5. Bai J, Shah A, Wu X (2018) Optimal multi-object segmentation with novel gradient vector flow based shape priors. Comput Med Imaging Graph 69: 96–111

    Article  Google Scholar 

  6. Xu C, Prince JL (1998a) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  MathSciNet  Google Scholar 

  7. Esteban CH, Schmitt F (2004) Silhouette and stereo fusion for 3D object modeling. Comput Vis Image Underst 96(3):367–392

    Article  Google Scholar 

  8. Han X, Xu C, Prince JL (2007) Fast numerical scheme for gradient vector flow computation using a multigrid method. IET Image Process 1(1):48–55

    Article  Google Scholar 

  9. Ren D, Zuo W, Zhao X, Lin Z, Zhang D (2013) Fast gradient vector flow computation based on augmented Lagrangian method. Pattern Recogn Lett 34(2):219–225

    Article  Google Scholar 

  10. Smistad E, Elster AC, Lindseth F (2015) Real-time gradient vector flow on GPUs using OpenCL. J Real-Time Image Process 10(1):67–74

    Article  Google Scholar 

  11. Smistad E, Lindseth F (2016) Multigrid gradient vector flow computation on the GPU. J Real-Time Image Process 12(3):593–601

    Article  Google Scholar 

  12. Xu C, Han X, Prince JL (2008) Gradient vector flow deformable models. In: Bankman I (ed) Handbook of medical image processing and analysis, 2nd edn. Academic Press, Cambridge, pp 181–194

    Google Scholar 

  13. Xu C, Prince JL (1998b) Generalized gradient vector flow external forces for active contours. Signal Process 71(2):131–139

    Article  Google Scholar 

  14. Jaouen V, Gonzalez P, Stute S, Guilloteau D, Chalon S et al (2014) Variational segmentation of vector-valued images with gradient vector flow. IEEE Trans Image Process 23(11):4773–4785

    Article  MathSciNet  Google Scholar 

  15. Hafiane A, Vieyres P, Delbos A (2014) Phase-based probabilistic active contour for nerve detection in ultrasound images for regional anesthesia. Comput Biol Med 52:88–95

    Article  Google Scholar 

  16. Ray N, Acton ST (2004) Motion gradient vector flow: an external force for tracking rolling leukocytes with shape and size constrained active contours. IEEE Trans Med Imaging 23(12):1466–1478

    Article  Google Scholar 

  17. Li B, Acton ST (2007) Active contour external force using vector field convolution for image segmentation. IEEE Trans Image Process 16(8):2096–2106

    Article  MathSciNet  Google Scholar 

  18. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4): 321–331

    Article  Google Scholar 

  19. Xu C, Prince JL (2012) Active contours, deform- able models, and gradient vector flow. Online resource: http://www.iacl.ece.jhu.edu/static/gvf. In- cluding code download

  20. Xu C, Yezzi A, Prince JL (2000) On the relationship between parametric and geometric active contours and its applications. In: 34th Asilomar conference on signals, systems and computers, vol 1, pp 483–489

    Google Scholar 

  21. Paragios N, Mellina-Gottardo O, Ramesh V (2004) Gradient vector flow fast geometric active contours. IEEE Trans Pattern Anal Mach Intell 26(3):402–407

    Article  Google Scholar 

  22. Goldenberg R, Kimmel R, Rivlin E, Rudzsky M (2001) Fast geodesic active contours. IEEE Trans Image Process 10(10):1467–1475

    Article  MathSciNet  Google Scholar 

  23. Guilot L, Bergounioux M (2009) Existence and uniqueness results for the gradient vector flow and geodesic active contours mixed model. Commun Pure Appl Anal 8(4):1333–1349

    Article  MathSciNet  Google Scholar 

  24. Li Q, Deng T, Xie W (2016) Active contours driven by divergence of gradient vector flow. Signal Process 120:185–199

    Article  Google Scholar 

  25. Rodtook A, Makhanov SS (2013) Multi-feature gradient vector flow snakes for adaptive segmentation of the ultrasound images of breast cancer. J Vis Commun Image Represent 24(8):1414–1430

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyang Xu .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xu, C., Prince, J.L. (2020). Gradient Vector Flow. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_712-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_712-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics