Skip to main content

Linear Programming

  • Living reference work entry
  • First Online:
Computer Vision

Synonyms

LP

Definition

A linear programming problem (also termed linear program) is an optimization problem to minimize or maximize a linear objective function subject to linear equality/inequality constraints. Linear programming, often abbreviated as LP, is a methodology initiated by G. Dantzig, J. von Neumann, L. V. Kantorovich, and others in the 1940s [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. It includes:

  • Modeling techniques to formulate real-world problems into linear programs

  • Theory about the mathematical structure of linear programs

  • Algorithms for numerically solving linear programs

Background

For theoretical treatment and software development, it is convenient to use a specific form to describe linear programs. Often adopted for use is:

$$\displaystyle \begin{aligned} \begin{array}{@{}ll@{}} \mbox{Minimize} & c^{\top} x\\ \mbox{subject to} & Ax = b\\ &x \geq \mathbf{0},\\ \end{array} \end{aligned} $$
(1)

called the standard form, although the terminology varies in the literature. It...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Chvátal V (1983) Linear programming. W.H. Freeman and Company, New York

    MATH  Google Scholar 

  2. Dantzig GB (1963) Linear programming and extensions. Princeton University Press, Princeton

    Book  Google Scholar 

  3. Dantzig GB, Thapa MN (1997) Linear programming 1: introduction. Springer, New York

    MATH  Google Scholar 

  4. Dantzig GB, Thapa MN (2003) Linear programming 2: theory and extensions. Springer, New York

    MATH  Google Scholar 

  5. Dorfman R, Samuelson PA, Solow RM (1987) Linear programming and economic analysis (New edition). Dover Publications, New York

    MATH  Google Scholar 

  6. Ferris MC, Mangasarian OL, Wright SJ (2008) Linear programming with MATLAB. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  7. Lasserre J-B (2009) Linear and integer programming vs linear integration and counting: a duality viewpoint. Springer, New York/London

    Book  Google Scholar 

  8. Nemhauser GL, Rinnooy Kan AHG, Todd MJ (1989) Optimization. Handbooks in operations research and management science, vol 1. Elsevier Science Publishers, New York

    Google Scholar 

  9. Schrijver A (1986) Theory of linear and integer programming. Wiley, Chichester/New York

    MATH  Google Scholar 

  10. Vanderbei RJ (2014) Linear programming: foundations and extensions, 4th edn. Springer, New York

    Book  Google Scholar 

  11. Schrijver A (2003) Combinatorial optimization—polyhedra and efficiency. Springer, Berlin/New York

    MATH  Google Scholar 

  12. den Hertog D (1994) Interior point approach to linear, quadratic and convex programming: algorithms and complexity. Kluwer Academic Publishers, Dordrecht/Boston

    Book  Google Scholar 

  13. Kojima M, Megiddo N, Noma T, Yoshise A (1991) A unified approach to interior point algorithms for linear complementarity problems. Lecture notes in computer science, vol 538. Springer, Berlin/New York

    Book  Google Scholar 

  14. Nesterov Y, Nemirovskii A (1994) Interior point polynomial algorithms in convex programming. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  15. Renegar J (1987) A mathematical view of interior-point methods in convex optimization. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  16. Roos C, Terlaky T, Vial J-P (2006) Interior point methods for linear optimization, 2nd edn. Springer, New York

    MATH  Google Scholar 

  17. Wright S (1997) Primal-dual interior-point methods. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  18. Ye Y (1997) Interior point algorithms: theory and analysis. Wiley, New York

    Book  Google Scholar 

  19. Grötschel M, Lovász L, Schrijver A (1993) Geometric algorithms and combinatorial optimization, 2nd edn. Springer, Berlin/New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Murota .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Murota, K. (2020). Linear Programming. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_648-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_648-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics