Skip to main content

Feature Selection

  • Living reference work entry
  • First Online:
Computer Vision

Synonyms

Dimensionality reduction; Feature reduction; Variable selection

Related Concepts

Definition

Feature selection refers to a set of techniques for automatically extracting important features from raw observations or reducing the set of dimensions from a given feature set, in a task-dependent manner.

Background

Feature selection refers to a large set of overlapping techniques, ranging from methods such as dimensionality reduction, subset selection, and more recently feature learning or representation learning. Since early works in pattern analysis [1], there has been an interest in extracting parsimonious and meaningful features from raw data for tasks such as recognition, compression, etc. Classically, features based on intuition or domain knowledge were considered popular; however, automatic methods for feature selection that can find optimal transformations of raw data are of contemporary interest. Toward this, linear and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441

    Article  MATH  Google Scholar 

  2. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13:411–430

    Article  Google Scholar 

  3. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7:179–188

    Article  Google Scholar 

  4. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  5. Wold H (1985) Partial least squares. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical sciences. Wiley, New York, pp 581–591

    Google Scholar 

  6. Freund Y, Schapire RE (1995) A decision-theoretic generalization of on-line learning and an application to boosting. In: Proceedings of the second European conference on computational learning theory, pp 23–37

    Google Scholar 

  7. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  8. Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H (2017) Feature selection: a data perspective. ACM Comput Surv 50(6):94:1–94:45

    Article  Google Scholar 

  9. Jolliffe IT (1986) Principal component analysis. Springer, New York

    Book  MATH  Google Scholar 

  10. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley-Interscience, New York

    MATH  Google Scholar 

  11. Jones MC, Sibson R (1987) What is projection pursuit? J R Stat Soc Ser A (General) 150(1):1–37

    Article  MathSciNet  MATH  Google Scholar 

  12. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  13. Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  14. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  15. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    MATH  Google Scholar 

  16. McInnes L, Healy J, Saul N, Großberger L (2018) UMAP: uniform manifold approximation and projection. J Open Source Softw 3(29):861

    Article  Google Scholar 

  17. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  18. Etemad K, Chellappa R (1997) Discriminant analysis for recognition of human face images. J Opt Soc Am A 14(8):1724–1733

    Article  Google Scholar 

  19. Bartlett MS, Movellan JR, Sejnowski TJ (2002) Face recognition by independent component analysis. IEEE Trans Neural Netw 13(6):1450–1464

    Article  Google Scholar 

  20. Yang MH (2002) Kernel eigenfaces vs. kernel fisherfaces: face recognition using kernel methods. In: Proceedings of the fifth IEEE international conference on automatic face and gesture recognition, p 215

    Google Scholar 

  21. Guo G, Li SZ, Chan K (2000) Face recognition by support vector machines. In: Proceedings of the fourth IEEE international conference on automatic face and gesture recognition, p 196

    Google Scholar 

  22. Schwartz WR, Kembhavi A, Harwood D, Davis LS (2009) Human detection using partial least squares analysis. In: International conference on computer vision

    Book  Google Scholar 

  23. Schwartz WR, Guo H, Davis LS (2010) A robust and scalable approach to face identification. In: European conference on computer vision

    Book  Google Scholar 

  24. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  MathSciNet  MATH  Google Scholar 

  25. Kingma DP, Welling M (2014) Auto-encoding variational bayes. In: 2nd international conference on learning representations, ICLR 2014

    Google Scholar 

  26. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: 26th annual conference on neural information processing systems 2012, pp 1106–1114

    Google Scholar 

  27. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville AC, Bengio Y (2014) Generative adversarial nets. In: Annual conference on neural information processing systems 2014, pp 2672–2680

    Google Scholar 

  28. Srivastava A, Joshi SH, Mio W, Liu X (2005) Statistical shape analysis: clustering, learning, and testing. IEEE Trans Pattern Anal Mach Intell 27(4):590–602

    Article  Google Scholar 

  29. Tuzel O, Porikli F, Meer P (2008) Pedestrian detection via classification on Riemannian manifolds. IEEE Trans Pattern Anal Mach Intell 30(10):1713–1727

    Article  Google Scholar 

  30. Veeraraghavan A, Srivastava A, Roy Chowdhury AK, Chellappa R (2009) Rate-invariant recognition of humans and their activities. IEEE Trans Image Process 18(6):1326–1339

    Article  MathSciNet  MATH  Google Scholar 

  31. Bhattacharya R, Patrangenaru V (2003) Large sample theory of intrinsic and extrinsic sample means on manifolds-I. Ann Stat 31(1):1–29

    Article  MathSciNet  MATH  Google Scholar 

  32. Pennec X (2006) Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J Math Imaging Vis 25(1):127–154

    Article  MathSciNet  Google Scholar 

  33. Fletcher PT, Lu C, Pizer SM, Joshi S (2004) Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans Med Imaging 23(8):995–1005

    Article  Google Scholar 

  34. Turaga P, Srivastava A (eds) (2016) Riemannian computing in computer vision. Springer International Publishing, Cham

    MATH  Google Scholar 

  35. Nayar SK, Branzoi V, Boult TE (2006) Programmable imaging: towards a flexible camera. Int J Comput Vis 70(1):7–22

    Article  Google Scholar 

  36. Veeraraghavan A, Raskar R, Agrawal A, Mohan A, Tumblin J (2007) Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Trans Graph 26:69

    Article  Google Scholar 

  37. Johnson WB, Lindenstrauss J (1984) Extensions of Lipschitz mappings into a Hilbert space. In: Conference on modern analysis and probability, pp 189–206

    MATH  Google Scholar 

  38. Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, Baraniuk RG (2008) Single-pixel imaging via compressive sampling. IEEE Signal Process Mag 25(2):83–91

    Article  Google Scholar 

  39. Tan J, Niu L, Adams JK, Boominathan V, Robinson JT, Baraniuk RG, Veeraraghavan A (2019) Face detection and verification using lensless cameras. IEEE Trans Comput Imaging 5(2):180–194

    Article  Google Scholar 

  40. Kulkarni K, Turaga PK (2016) Reconstruction-free action inference from compressive imagers. IEEE Trans Pattern Anal Mach Intell 38(4):772–784

    Article  Google Scholar 

  41. Huang L, Kulkarni K, Jha A, Lohit S, Jayasuriya S, Turaga PK (2018) CS-VQA: visual question answering with compressively sensed images. In: IEEE international conference on image processing (ICIP) 2018, pp 1283–1287

    Google Scholar 

  42. Agrawal AK, Baraniuk RG, Favaro P, Veeraraghavan A (2016) Signal processing for computational photography and displays [from the guest editors]. IEEE Signal Process Mag 33(5):12–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan Turaga .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chellappa, R., Turaga, P. (2020). Feature Selection. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_299-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_299-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics