Skip to main content

Deep Learning Methods for Limited Data Problems in X-Ray Tomography

  • Living reference work entry
  • First Online:
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Abstract

Successful medical diagnosis heavily relies on the reconstruction and analysis of images showing organs, bones, and other structures in the interior of the human body. In the last couple of years, the stored image data has increased tremendously, and also the computing power of modern GPUs experienced huge progress. Machine learning methods, and in particular deep learning methods, are on the rise to tackle advanced image reconstruction and image analysis tasks to support medical doctors in their diagnostic routines. In this chapter, we focus on the reconstruction task; especially consider tomographic imaging problems with incomplete, corrupted, or noisy data; and demonstrate how deep learning methods enable us to solve such tasks in a unified manner. We present the basic ideas of these methods assuming paired training data (supervised learning) and utilizing only feed-forward networks. In particular, we illustrate the underlying concepts for missing data problems in classical computed tomography (CT), noting that most of the concepts can be transferred to other inverse imaging problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 1217 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl. 33(12), 124007 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Adler, J., Öktem O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322–1332 (2018)

    Article  Google Scholar 

  • Anirudh, R., Kim, H., Thiagarajan, J.J., Mohan, K.A., Champley, K., Bremer, T.: Lose the views: limited angle CT reconstruction via implicit sinogram completion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6343–6352 (2018)

    Google Scholar 

  • Arridge, S., Maass, P., Öktem, O., Schönlieb, C.-B.: Solving inverse problems using data-driven models. Acta Numer. 28, 1–174 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Bayaraa, T., Hyun, C.M., Jang, T.J., Lee, S.M., Seo, J.K.: A two-stage approach for beam hardening artifact reduction in low-dose dental CBCT. IEEE Access 8, 225981–225994 (2020)

    Article  Google Scholar 

  • Beard, P.: Biomedical photoacoustic imaging. Interface Focus 1(4), 602–631 (2011)

    Article  Google Scholar 

  • Boink, Y.E., Brune, C.: Learned SVD: solving inverse problems via hybrid autoencoding. arXiv preprint arXiv:1912.10840 (2019)

    Google Scholar 

  • Boink, Y.E., Manohar, S., Brune, C.: A partially-learned algorithm for joint photo-acoustic reconstruction and segmentation. IEEE Trans. Medi. Imaging 39(1), 129–139 (2019)

    Article  Google Scholar 

  • Boink, Y.E., Haltmeier, M., Holman, S., Schwab, J.: Data-consistent neural networks for solving nonlinear inverse problems. arXiv preprint arXiv:2003.11253 (2020)

    Google Scholar 

  • Bubba, T.A., Kutyniok, G., Lassas, M., Maerz, M., Samek, W., Siltanen, S., Srinivasan, V.: Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography. Inverse Probl. 35(6), 064002 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, H., Zhang, Y., Kalra, M.K., Lin, F., Chen, Y., Liao, P., Zhou, J., Wang, G.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)

    Article  Google Scholar 

  • Chen, G., Hong, X., Ding, Q., Zhang, Y., Chen, H., Fu, S., Zhao, Y., Zhang, X., Ji, H., Wang, G. et al.: Airnet: fused analytical and iterative reconstruction with deep neural network regularization for sparse-data CT. Med. Phys. 47(7), 2916–2930 (2020)

    Article  Google Scholar 

  • Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Deans, S.R.: The Radon Transform and Some of Its Applications. Courier Corporation. Dover Publications, INC., Mineola, New York (2007)

    MATH  Google Scholar 

  • Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer Science & Business Media, New York (2010)

    Book  MATH  Google Scholar 

  • Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer Science & Business Media, Dordrecht (1996)

    Book  MATH  Google Scholar 

  • Frikel, J., Quinto, E.T.: Characterization and reduction of artifacts in limited angle tomography. Inverse Probl. 29(12), 125007 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghani, M.U., Karl, W.C.: CNN based sinogram denoising for low-dose CT. In: Mathematics in Imaging, pp. MM2D–5. Optical Society of America, Optical Society of America, Orlando, Florida (2018)

    Google Scholar 

  • Ghani, M.U., Karl, W.C.: Fast enhanced CT metal artifact reduction using data domain deep learning. IEEE Trans. Comput. Imaging, IEEE Trans. Comput. Imaging, vol. 6, 181–193 (2019)

    Google Scholar 

  • Gjesteby, L., Shan, H., Yang, Q., Xi, Y., Claus, B., Jin, Y., De Man, B., Wang, G.: Deep neural network for CT metal artifact reduction with a perceptual loss function. In: Proceedings of the Fifth International Conference on Image Formation in X-Ray Computed Tomography, vol. 1 (2018)

    Google Scholar 

  • Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA (2016)

    MATH  Google Scholar 

  • Gu, J., Ye, J.C.: Multi-scale wavelet domain residual learning for limited-angle CT reconstruction. arXiv preprint arXiv:1703.01382 (2017)

    Google Scholar 

  • Guazzo, A.: Deep learning for PET imaging: from denoising to learned primal-dual reconstruction (2020)

    Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media (2009)

    Google Scholar 

  • Hauptmann, A., Adler, J., Arridge, S.R., Oktem, O.: Multi-scale learned iterative reconstruction. IEEE Trans. Comput. Imaging, vol. 6, 843–856 (2020)

    Article  Google Scholar 

  • Hecht-Nielsen, R.: Theory of the backpropagation neural network. In: Neural Networks for Perception, pp. 65–93. Elsevier (1992)

    Google Scholar 

  • Higham, C.F., Higham, D.J.: Deep learning: an introduction for applied mathematicians. SIAM Rev. 61(4), 860–891 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Hounsfield, G.N.: Computerized transverse axial scanning (tomography): part 1. description of system. Br. J. Radiol. 46(552), 1016–1022 (1973)

    Google Scholar 

  • Huang, Y., Huang, X., Taubmann, O., Xia, Y., Haase, V., Hornegger, J., Lauritsch, G., Maier, A.: Restoration of missing data in limited angle tomography based on Helgason–Ludwig consistency conditions. Biomed. Phys. Eng. Express 3(3), 035015 (2017)

    Article  Google Scholar 

  • Huang, X., Wang, J., Tang, F., Zhong, T., Zhang, Y.: Metal artifact reduction on cervical CT images by deep residual learning. Biomed. Eng. Online 17(1), 175 (2018a)

    Article  Google Scholar 

  • Huang, Y., Würfl, T., Breininger, K., Liu, L., Lauritsch, G., Maier, A.: Some investigations on robustness of deep learning in limited angle tomography. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 145–153. Springer (2018b)

    Google Scholar 

  • Kang, E., Min, J., Ye, J.C.: A deep convolutional neural network using directional wavelets for low-dose x-ray CT reconstruction. Med. Phys. 44(10), e360–e375 (2017)

    Article  Google Scholar 

  • Kuanar, S., Athitsos, V., Mahapatra, D., Rao, K.R., Akhtar, Z., Dasgupta, D.: Low dose abdominal CT image reconstruction: an unsupervised learning based approach. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1351–1355. IEEE (2019)

    Google Scholar 

  • Kwon, T., Ye, J.C.: Cycle-free cyclegan using invertible generator for unsupervised low-dose CT denoising. arXiv preprint arXiv:2104.08538 (2021)

    Google Scholar 

  • Landweber, L.: An iteration formula for Fredholm integral equations of the first kind. Am. J. Math. 73(3), 615–624 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  • Lee, J., Gu, J., Ye, J.C.: Unsupervised CT metal artifact learning using attention-guided beta-cyclegan. arXiv preprint arXiv:2007.03480 (2020)

    Google Scholar 

  • Leuschner, J., Schmidt, M., Baguer, D.O., Maass, P.: LoDoPab-CT, a benchmark dataset for low-dose computed tomography reconstruction. Sci. Data 8(1), 1–12 (2021)

    Article  Google Scholar 

  • Li, H., Schwab, J., Antholzer, S., Haltmeier, M.: Nett: solving inverse problems with deep neural networks. Inverse Probl. 36(6), 065005 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging focusing on mri. Zeitschrift für Medizinische Physik 29(2), 102–127 (2019)

    Article  Google Scholar 

  • Lunz, S., Öktem, O., Schönlieb, C.-B.: Adversarial regularizers in inverse problems. arXiv preprint arXiv:1805.11572 (2018)

    Google Scholar 

  • Mukherjee, S., Dittmer, S., Shumaylov, Z., Lunz, S., Öktem, O., Schönlieb, C.-B.: Learned convex regularizers for inverse problems. arXiv preprint arXiv:2008.02839 (2020)

    Google Scholar 

  • Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  • Obmann, D., Nguyen, L., Schwab, J., Haltmeier, M.: Sparse anett for solving inverse problems with deep learning. In: 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops), pp. 1–4. IEEE (2020)

    Google Scholar 

  • Park, H.S., Chung, Y.E., Lee, S.M., Kim, H.P., Seo, J.K.: Sinogram-consistency learning in CT for metal artifact reduction. arXiv preprint arXiv:1708.00607, 1 (2017)

    Google Scholar 

  • Purcell, E.M., Torrey, H.C., Pound, R.V.: Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69(1–2), 37 (1946)

    Article  Google Scholar 

  • Quinto, E.T.: Tomographic reconstructions from incomplete data-numerical inversion of the exterior radon transform. Inverse Probl. 4(3), 867 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609. 04747 (2016)

    Google Scholar 

  • Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, New York (2009)

    MATH  Google Scholar 

  • Schwab, J., Antholzer, S., Nuster, R., Haltmeier, M.: Real-time photoacoustic projection imaging using deep learning. arXiv preprint arXiv:1801.06693 (2018)

    Google Scholar 

  • Schwab, J., Antholzer, S., Haltmeier, M.: Big in Japan: regularizing networks for solving inverse problems. J. Math. Imaging Vis., vol. 62, 445–455 (2019a)

    Article  MathSciNet  MATH  Google Scholar 

  • Schwab, J., Antholzer, S., Haltmeier, M.: Deep null space learning for inverse problems: convergence analysis and rates. Inverse Probl. 35(2), 025008 (2019b)

    Article  MathSciNet  MATH  Google Scholar 

  • Schwab, J., Antholzer, S., Haltmeier, M.: Learned backprojection for sparse and limited view photoacoustic tomography. In: Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878, p. 1087837. International Society for Optics and Photonics, SPIE BiOS, San Francisco, California (2019c)

    Google Scholar 

  • Shan, H., Padole, A., Homayounieh, F., Kruger, U., Khera, R.D., Nitiwarangkul, C., Kalra, M.K., Wang, G.: Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat. Mach. Intell. 1(6), 269–276 (2019)

    Article  Google Scholar 

  • Wang, G.: A perspective on deep imaging. IEEE Access 4, 8914–8924 (2016)

    Article  Google Scholar 

  • Werbos, P.: Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph. D. dissertation, Harvard University (1974)

    Google Scholar 

  • Wu, D., Kim, K., El Fakhri, G., Li, Q.: Iterative low-dose CT reconstruction with priors trained by artificial neural network. IEEE Trans. Med. Imaging 36(12), 2479–2486 (2017)

    Article  Google Scholar 

  • Wu, D., Kim, K., Kalra, M.K., De Man, B., Li, Q.: Learned primal-dual reconstruction for dual energy computed tomography with reduced dose. In: 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, vol. 11072, p. 1107206. International Society for Optics and Photonics (2019)

    Google Scholar 

  • Würfl, T., Hoffmann, M., Christlein, V., Breininger, K., Huang, Y., Unberath, M., Maier, A.K.: Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems. IEEE Trans. Med. Imaging 37(6), 1454–1463 (2018)

    Article  Google Scholar 

  • Zhang, Y., Yu, H.: Convolutional neural network based metal artifact reduction in x-ray computed tomography. IEEE Trans. Med. Imaging 37(6), 1370–1381 (2018)

    Article  Google Scholar 

  • Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Schwab .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schwab, J. (2022). Deep Learning Methods for Limited Data Problems in X-Ray Tomography. In: Chen, K., Schönlieb, CB., Tai, XC., Younces, L. (eds) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-03009-4_82-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03009-4_82-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03009-4

  • Online ISBN: 978-3-030-03009-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics