Skip to main content

Connecting Hamilton-Jacobi Partial Differential Equations with Maximum a Posteriori and Posterior Mean Estimators for Some Non-convex Priors

  • Living reference work entry
  • First Online:
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Abstract

Many imaging problems can be formulated as inverse problems expressed as finite-dimensional optimization problems. These optimization problems generally consist of minimizing the sum of a data fidelity and regularization terms. In Darbon (SIAM J. Imag. Sci. 8:2268–2293, 2015), Darbon and Meng, (On decomposition models in imaging sciences and multi-time Hamilton-Jacobi partial differential equations, arXiv preprint arXiv:1906.09502, 2019), connections between these optimization problems and (multi-time) Hamilton-Jacobi partial differential equations have been proposed under the convexity assumptions of both the data fidelity and regularization terms. In particular, under these convexity assumptions, some representation formulas for a minimizer can be obtained. From a Bayesian perspective, such a minimizer can be seen as a maximum a posteriori estimator. In this chapter, we consider a certain class of non-convex regularizations and show that similar representation formulas for the minimizer can also be obtained. This is achieved by leveraging min-plus algebra techniques that have been originally developed for solving certain Hamilton-Jacobi partial differential equations arising in optimal control. Note that connections between viscous Hamilton-Jacobi partial differential equations and Bayesian posterior mean estimators with Gaussian data fidelity terms and log-concave priors have been highlighted in Darbon and Langlois, (On Bayesian posterior mean estimators in imaging sciences and Hamilton-Jacobi partial differential equations, arXiv preprint arXiv:2003.05572, 2020). We also present similar results for certain Bayesian posterior mean estimators with Gaussian data fidelity and certain non-log-concave priors using an analogue of min-plus algebra techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akian, M., Bapat, R., Gaubert, S.: Max-plus algebra. In: Handbook of Linear Algebra, 39 (2006)

    Google Scholar 

  • Akian, M., Gaubert, S., Lakhoua, A.: The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. SIAM J. Control. Optim. 47, 817–848 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Allain, M., Idier, J., Goussard, Y.: On global and local convergence of half-quadratic algorithms. IEEE Trans. Image Process. 15, 1130–1142 (2006)

    Article  Google Scholar 

  • Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Springer (2002)

    Google Scholar 

  • Aujol, J.-F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition application to SAR images. In: L.D. Griffin, Lillholm, M. (eds.) Scale Space Methods in Computer Vision. Springer, Berlin/Heidelberg, pp. 297–312 (2003)

    Google Scholar 

  • Aujol, J.-F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vision 22, 71–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston (1997). With appendices by Maurizio Falcone and Pierpaolo Soravia

    Google Scholar 

  • Bardi, M., Evans, L.: On Hopf’s formulas for solutions of Hamilton-Jacobi equations. Nonlinear Anal. Theory Methods Appl. 8, 1373–1381 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques et Applications. Springer, Berlin/Heidelberg (1994)

    MATH  Google Scholar 

  • Barron, E., Evans, L., Jensen, R.: Viscosity solutions of Isaacs’ equations and differential games with Lipschitz controls. J. Differ. Equ. 53, 213–233 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Bouman, C., Sauer, K.: A generalized gaussian image model for edge-preserving map estimation. IEEE Trans. Trans. Signal Process. 2, 296–310 (1993)

    Article  Google Scholar 

  • Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  • Burger, M., Lucka, F.: Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper bayes estimators. Inverse Probl. 30, 114004 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84, 288–307 (2009)

    Article  MATH  Google Scholar 

  • Chambolle, A., Novaga, M., Cremers, D., Pock, T.: An introduction to total variation for image analysis. In: Theoretical Foundations and Numerical Methods for Sparse Recovery, De Gruyter (2010)

    Google Scholar 

  • Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Champagnat, F., Idier, J.: A connection between half-quadratic criteria and em algorithms. IEEE Signal Processing Lett. 11, 709–712 (2004)

    Article  Google Scholar 

  • Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T.F., Shen, J.: Image processing and analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2005). Variational, PDE, wavelet, and stochastic methods

    Google Scholar 

  • Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  • Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process. 6, 298–311 (1997)

    Article  Google Scholar 

  • Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Darbon, J.: On convex finite-dimensional variational methods in imaging sciences and Hamilton–Jacobi equations. SIAM J. Imag. Sci. 8, 2268–2293 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Darbon, J., Ciril, I., Marquina, A., Chan, T.F., Osher, S.: A note on the bregmanized total variation and dual forms. In: 2009 16th IEEE International Conference on Image Processing (ICIP), Nov 2009, pp. 2965–2968

    Google Scholar 

  • Darbon, J., Langlois, G.P.: On Bayesian posterior mean estimators in imaging sciences and Hamilton-Jacobi partial differential equations. arXiv preprint arXiv: 2003.05572 (2020)

    Google Scholar 

  • Darbon, J., Meng, T.: On decomposition models in imaging sciences and multi-time Hamilton-Jacobi partial differential equations. SIAM Journal on Imaging Sciences. 13(2), 971–1014 (2020). https://doi.org/10.1137/19M1266332

    Article  MathSciNet  MATH  Google Scholar 

  • Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part I: Fast and exact optimization. J. Math. Imaging Vision 26, 261–276 (2006)

    Article  MathSciNet  Google Scholar 

  • Demoment, G.: Image reconstruction and restoration: Overview of common estimation structures and problems. IEEE Trans. Acoust. Speech Signal Process. 37, 2024–2036 (1989)

    Article  Google Scholar 

  • Dou, Z., Song, M., Gao, K., Jiang, Z.: Image smoothing via truncated total variation. IEEE Access 5, 27337–27344 (2017)

    Article  Google Scholar 

  • Dower, P.M., McEneaney, W.M., Zhang, H.: Max-plus fundamental solution semigroups for optimal control problems. In: 2015 Proceedings of the Conference on Control and its Applications. SIAM, 2015, pp. 368–375

    Google Scholar 

  • Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley (2012)

    Google Scholar 

  • Evans, L.C.: Partial differential equations, vol. 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  • Fleming, W., McEneaney, W.: A max-plus-based algorithm for a Hamilton–Jacobi–Bellman equation of nonlinear filtering. SIAM J. Control. Optim. 38, 683–710 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, vol. 25. Springer Science & Business Media (2006)

    Google Scholar 

  • Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, 2nd edn. (2009)

    Google Scholar 

  • Gaubert, S., McEneaney, W., Qu, Z.: Curse of dimensionality reduction in max-plus based approximation methods: Theoretical estimates and improved pruning algorithms. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference. IEEE, 2011, pp. 1054–1061

    Google Scholar 

  • Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. 4, 932–946 (1995)

    Article  Google Scholar 

  • Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14, 367–383 (1992)

    Article  Google Scholar 

  • Gribonval, R.: Should penalized least squares regression be interpreted as maximum a posteriori estimation? IEEE Trans. Signal Process. 59, 2405–2410 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Gribonval, R., Machart, P.: Reconciling” priors” &” priors” without prejudice? In: Advances in Neural Information Processing Systems, 2013, pp. 2193–2201

    Google Scholar 

  • Gribonval, R., Nikolova, M.: On bayesian estimation and proximity operators, arXiv preprint arXiv:1807.04021 (2018)

    Google Scholar 

  • Hochbaum, D.S.: An efficient algorithm for image segmentation, Markov random fields and related problems. J. ACM 48, 686–701 (2001)

    MATH  Google Scholar 

  • Hopf, E.: Generalized solutions of non-linear equations of first order. J. Math. Mech. 14, 951–973 (1965)

    MathSciNet  MATH  Google Scholar 

  • Idier, J.: Convex half-quadratic criteria and interacting auxiliary variables for image restoration. IEEE Trans. Image Process. 10, 1001–1009 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Kay, S.M.: Fundamentals of Statistical Signal Processing. Prentice Hall PTR (1993)

    Google Scholar 

  • Kolokoltsov, V.N., Maslov, V.P.: Idempotent analysis and its applications, vol. 401 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1997) Translation of ıt Idempotent analysis and its application in optimal control (Russian), “Nauka” Moscow, 1994 [ MR1375021 (97d:49031)], Translated by V. E. Nazaikinskii, With an appendix by Pierre Del Moral

    Google Scholar 

  • Le Guen, V.: Cartoon + Texture Image Decomposition by the TV-L1yModel. Image Process. Line 4, 204–219 (2014)

    Article  Google Scholar 

  • Likas, A.C., Galatsanos, N.P.: A variational approach for bayesian blind image deconvolution. IEEE Trans. Signal Process. 52, 2222–2233 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Lions, P.L., Rochet, J.-C.: Hopf formula and multitime Hamilton-Jacobi equations. Proc. Am. Math. Soc. 96, 79–84 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Louchet, C.: Modèles variationnels et bayésiens pour le débruitage d’images: de la variation totale vers les moyennes non-locales. Ph.D. thesis, Université René Descartes-Paris V (2008)

    Google Scholar 

  • Louchet, C., Moisan, L.: Posterior expectation of the total variation model: properties and experiments. SIAM J. Imaging Sci. 6, 2640–2684 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Burger, Y.D.M., Sciacchitano, F.: Bregman cost for non-gaussian noise. arXiv preprint arXiv:1608.07483 (2016)

    Google Scholar 

  • McEneaney, W.: Max-plus methods for nonlinear control and estimation. Springer Science & Business Media (2006)

    Google Scholar 

  • McEneaney, W.: A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs. SIAM J. Control. Optim. 46, 1239–1276 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • McEneaney, W.M., Deshpande, A., Gaubert, S.: Curse-of-complexity attenuation in the curse-of-dimensionality-free method for HJB PDEs. In: 2008 American Control Conference. IEEE, 2008, pp. 4684–4690

    Google Scholar 

  • McEneaney, W.M., Kluberg, L.J.: Convergence rate for a curse-of-dimensionality-free method for a class of HJB PDEs. SIAM J. Control. Optim. 48, 3052–3079 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Nikolova, M., Chan, R.H.: The equivalence of half-quadratic minimization and the gradient linearization iteration. IEEE Trans. Image Process. 16, 1623–1627 (2007)

    Article  MathSciNet  Google Scholar 

  • Nikolova, M., Ng, M.: Fast image reconstruction algorithms combining half-quadratic regularization and preconditioning. In: Proceedings 2001 International Conference on Image Processing (Cat. No. 01CH37205), vol. 1. IEEE, 2001, pp. 277–280

    Google Scholar 

  • Nikolova, M., Ng, M.K.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J. Sci. Comput. 27, 937–966 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Nikolova, M., Ng, M.K.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J. Sci. Comput. 27, 937–966 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Osher, S., A. Solé, and Vese, L.: , Image decomposition and restoration using total variation minimization and the H −1 norm, Multiscale Modeling & Simulation, 1 (2003), pp. 349–370.

    Google Scholar 

  • Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational methods in imaging, vol. 167 of Applied Mathematical Sciences. Springer, New York (2009)

    Google Scholar 

  • Tho, N.: Hopf-Lax-Oleinik type formula for multi-time Hamilton-Jacobi equations. Acta Math. Vietnamica 30, 275–287 (2005)

    MathSciNet  MATH  Google Scholar 

  • Vese, L.A., Le Guyader, C.: Variational methods in image processing, Chapman & Hall/CRC Mathematical and Computational Imaging Sciences. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  • Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Applications of Mathematics. Springer, 2nd edn. (2003)

    Google Scholar 

Download references

Acknowledgements

This work was funded by NSF 1820821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Darbon .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Darbon, J., Langlois, G.P., Meng, T. (2021). Connecting Hamilton-Jacobi Partial Differential Equations with Maximum a Posteriori and Posterior Mean Estimators for Some Non-convex Priors. In: Chen, K., Schönlieb, CB., Tai, XC., Younces, L. (eds) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-03009-4_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03009-4_56-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03009-4

  • Online ISBN: 978-3-030-03009-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics