Skip to main content

PDE-Constrained Shape Optimization: Towards Product Shape Spaces and Stochastic Models

  • Living reference work entry
  • First Online:
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Abstract

Shape optimization models with one or more shapes are considered in this chapter. Of particular interest for applications are problems in which a so-called shape functional is constrained by a partial differential equation (PDE) describing the underlying physics. A connection can be made between a classical view of shape optimization and the differential geometric structure of shape spaces. To handle problems where a shape functional depends on multiple shapes, a theoretical framework is presented, whereby the optimization variable can be represented as a vector of shapes belonging to a product shape space. The multi-shape gradient and multi-shape derivative are defined, which allows for a rigorous justification of a steepest descent method with Armijo backtracking. As long as the shapes as subsets of a hold-all domain do not intersect, solving a single deformation equation is enough to provide descent directions with respect to each shape. Additionally, a framework for handling uncertainties arising from inputs or parameters in the PDE is presented. To handle potentially high-dimensional stochastic spaces, a stochastic gradient method is proposed. A model problem is constructed, demonstrating how uncertainty can be introduced into the problem and the objective can be transformed by use of the expectation. Finally, numerical experiments in the deterministic and stochastic case are devised, which demonstrate the effectiveness of the presented algorithms.

This work has been partly supported by the state of Hamburg within the Landesforschungsförderung under project “Simulation-Based Design Optimization of Dynamic Systems Under Uncertainties” (SENSUS) with project number LFF-GK11, and by the German Academic Exchange Service (DAAD) within the program “Research Grants-Doctoral Programmes in Germany, 2017/18.” ____

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abraham, R., Marsden, J., Ratiu, T.: Manifolds, tensor analysis, and applications, vol. 75. Springer Science & Business Media, New York, USA (2012)

    MATH  Google Scholar 

  • Absil, P., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press, Princeton, USA (2008)

    Book  MATH  Google Scholar 

  • Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100) (2015). https://doi.org/10.11588/ans.2015.100.20553

  • Babuska, I., Tempone, R., Zouraris, G.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Bänsch, E., Morin, P., Nochetto, R.H.: A finite element method for surface diffusion: the parametric case. J. Comp. Phys. 203(1), 321–343 (2005). https://doi.org/10.1016/j.jcp.2004.08.022

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer, M., Harms, P., Michor, P.: Sobolev metrics on shape space of surfaces. J. Geom. Mech. 3(4), 389–438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer, M., Harms, P., Michor, P.: Sobolev metrics on shape space II: weighted Sobolev metrics and almost local metrics. J. Geom. Mech. 4(4), 365–383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Berggren, M.: A unified discrete-continuous sensitivity analysis method for shape optimization. In: Fitzgibbon, W., et al. (eds.) Applied and numerical partial differential equations. Computational methods in applied sciences, vol. 15, pp. 25–39. Springer (2010)

    Google Scholar 

  • Cheney, M., Isaacson, D., Newell, J.: Electrical impedance tomography. SIAM Rev. 41(1), 85–101 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Dambrine, M., Dapogny, C., Harbrecht, H.: Shape optimization for quadratic functionals and states with random right-hand sides. SIAM J. Control Optim. 53, 3081–3103 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Dambrine, M., Harbrecht, H., Puig, B.: Incorporating knowledge on the measurement noise in electrical impedance tomography. ESAIM: Control Optim. Calc. Var. 25, 84 (2019)

    MathSciNet  MATH  Google Scholar 

  • Delfour, M., Zolésio, J.P.: Shapes and geometries: Metrics, analysis, differential calculus, and optimization. Advanced design control, vol. 22, 2nd edn. SIAM, Philadelphia, USA (2001)

    Google Scholar 

  • Doǧan, G., Morin, P., Nochetto, R.H., Verani, M.: Discrete gradient flows for shape optimization and applications. Comput. Meth. Appl. Mech. Eng. 196(37–40), 3898–3914 (2007). https://doi.org/10.1016/j.cma.2006.10.046

  • Droske, M., Rumpf, M.: Multi scale joint segmentation and registration of image morphology. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2181–2194 (2007)

    Article  Google Scholar 

  • Etling, T., Herzog, R., Loayza, E., Wachsmuth, G.: First and second order shape optimization based on restricted mesh deformations. SIAM J. Scient. Comput. 42(2), A1200–A1225 (2020). https://doi.org/10.1137/19m1241465

    Article  MathSciNet  MATH  Google Scholar 

  • Evans, L.: Partial differential equations. graduate studies in mathematics, vol. 19. American Mathematical Society, Providence, USA (1998)

    Google Scholar 

  • Feppon, F., Allaire, G., Bordeu, F., Cortial, J., Dapogny, C.: Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution framework. SeMA J. Boletin de la Sociedad Espanñola de Matemática Aplicada. 76(3), 413–458 (2019). https://doi.org/10.1007/s40324-018-00185-4

    MathSciNet  MATH  Google Scholar 

  • Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. J. Math. Imaging Vis. 35(1), 86–102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Gangl, P., Laurain, A., Meftahi, H., Sturm, K.: Shape optimization of an electric motor subject to nonlinear magnetostatics. SIAM J. Sci. Comput. 37(6), B1002–B1025 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Geiersbach, C.: Stochastic approximation for PDE-constrained optimization under uncertainty. Ph.D. thesis, University of Vienna (2020)

    Google Scholar 

  • Geiersbach, C., Pflug, G.C.: Projected stochastic gradients for convex constrained problems in Hilbert spaces. SIAM J. Optim. 29(3), 2079–2099 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Geiersbach, C., Scarinci, T.: Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces. Comput. Optim. Appl. 3(78), 705–740 (2021). https://doi.org/10.1007/s10589-020-00259-y

    Article  MathSciNet  MATH  Google Scholar 

  • Geiersbach, C., Wollner, W.: A stochastic gradient method with mesh refinement for pde-constrained optimization under uncertainty. SIAM J. Sci. Comput. 42(5), A2750–A2772 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Geiersbach, C., Loayza-Romero, E., Welker, K.: Stochastic approximation for optimization in shape spaces. SIAM J. Optim. 31(1), 348–376 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Haber, E., Chung, M., Herrmann, F.: An effective method for parameter estimation with PDE constraints with multiple right-hand sides. SIAM J. Optim. 22(3), 739–757 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Hardesty, S., Kouri, D., Lindsay, P., Ridzal, D., Stevens, B., Viertel, R.: Shape optimization for control and isolation of structural vibrations in aerospace and defense applications. techreport, Office of Scientific and Technical Information (OSTI) (2020). https://doi.org/10.2172/1669731

  • Haubner, J., Siebenborn, M., Ulbrich, M.: A continuous perspective on shape optimization via domain transformations. SIAM J. Scient. Comput. 43(3), A1997–A2018 (2020). https://doi.org/10.1137/20m1332050

    Article  MathSciNet  MATH  Google Scholar 

  • Herzog, R., Loayza-Romero, E.: A manifold of planar triangular meshes with complete riemannian metric (2020). ArXiv:2012.05624

    Google Scholar 

  • Hiptmair, R., Paganini, A.: Shape optimization by pursuing diffeomorphisms. Comput. Methods Appl. Math. 15(3), 291–305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Hiptmair, R., Jerez-Hanckes, C., Mao, S.: Extension by zero in discrete trace spaces: inverse estimates. Math. Comput. 84(296), 2589–2615 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Hiptmair, R., Paganini, A., Sargheini, S.: Comparison of approximate shape gradients. BIT. Num. Math. 55(2), 459–485 (2015). https://doi.org/10.1007/s10543-014-0515-z

    Article  MathSciNet  MATH  Google Scholar 

  • Hiptmair, R., Scarabosio, L., Schillings, C., Schwab, C.: Large deformation shape uncertainty quantification in acoustic scattering. Adv. Comput. Math. 44(5), 1475–1518 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Advanced Design Control, vol. 15. SIAM, Philadelphia, USA (2008)

    Google Scholar 

  • Ito, K., Kunisch, K., Peichl, G.: Variational approach to shape derivatives. ESAIM Control Optim. Calc. Var. 14(3), 517–539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall, D.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Kriegl, A., Michor, P.: The convient setting of global analysis. In Mathematical surveys and monographs, vol. 53. American Mathematical Society, Providence, USA (1997). https://books.google.de/books?id=l-XxBwAAQBAJ

  • Kwon, O., Woo, E.J., Yoon, J., Seo, J.: Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm. IEEE Trans. Biomed. Eng. 49(2), 160–167 (2002)

    Article  Google Scholar 

  • Laurain, A., Sturm, K.: Domain expression of the shape derivative and application to electrical impedance tomography. Technical Report No. 1863, Weierstraß-Institut für angewandte Analysis und Stochastik, Berlin (2013)

    Google Scholar 

  • Laurain, A., Sturm, K.: Distributed shape derivative via averaged adjoint method and applications. ESAIM: Math. Model. Numer. Anal. 50(4), 1241–1267 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Ling, H., Jacobs, D.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  • Liu, D., Litvinenko, A., Schillings, C., Schulz, V.: Quantification of airfoil geometry-induced aerodynamic uncertainties—comparison of Approaches (2017)

    Book  MATH  Google Scholar 

  • Lord, G., Powell, C., Shardlow, T.: An introduction to computational stochastic PDEs. Cambridge University Press, Cambridge, UK (2014)

    Book  MATH  Google Scholar 

  • Luft, D., Schulz, V.: Pre-shape calculus and its application to mesh quality optimization. Control. Cybern. 50(3), 263–301 (2021a) https://doi.org/10.2478/candc-2021--0019. ArXiv:2012.09124

  • Luft, D., Schulz, V.: Simultaneous shape and mesh quality optimization using pre-shape calculus. Control. Cybern. 50(4), 473–520 (2021b) https://doi.org/10.2478/candc-2021--0028. ArXiv:2103.15109

  • Martin, M., Krumscheid, S., Nobile, F.: Analysis of stochastic gradient methods for PDE-constrained optimal control problems with uncertain parameters. Tech. rep., École Polytechnique MATHICSE Institute of Mathematics (2018)

    MATH  Google Scholar 

  • Martin, M., Nobile, F., Tsilifis, P.: A multilevel stochastic gradient method for pde-constrained optimal control problems with uncertain parameters. arXiv preprint arXiv:1912.11900 (2019)

    Google Scholar 

  • Martínez-Frutos, J., Herrero-Pérez, D., Kessler, M., Periago, F.: Robust shape optimization of continuous structures via the level set method. Comput. Methods Appl. Mech. Eng. 305, 271–291 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Michor, P., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005)

    MathSciNet  MATH  Google Scholar 

  • Michor, P., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS) 8(1), 1–48 (2006)

    Google Scholar 

  • Michor, P., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Morin, P., Nochetto, R.H., Pauletti, M.S., Verani, M.: Adaptive finite element method for shape optimization. ESAIM Control Optim. Calc. Var. 18(4), 1122–1149 (2012). https://doi.org/10.1051/cocv/2011192

    Article  MathSciNet  MATH  Google Scholar 

  • Novruzi, A., Pierre, M.: Structure of shape derivatives. J. Evol. Equ. 2(3), 365–382 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • O’neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press, London, UK (1983)

    MATH  Google Scholar 

  • Onyshkevych, S., Siebenborn, M.: Mesh quality preserving shape optimization using nonlinear extension operators. J Optim. Theory. Appl. 189(1), 291–316 (2021). https://doi.org/10.1007/s10957-021-01837-8

    Article  MathSciNet  MATH  Google Scholar 

  • Paganini, A.: Approximative shape gradients for interface problems. In: Pratelli, A., Leugering, G. (eds.) New trends in shape optimization. International series of numerical mathematics, vol. 166, pp. 217–227. Springer (2015)

    Google Scholar 

  • Quarteroni, A., Valli, A.: Domain decomposition methods for partial differential equations. Oxford University Press, Oxford, UK (1999)

    MATH  Google Scholar 

  • Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • Schulz, V.: A Riemannian view on shape optimization. Found. Comput. Math. 14(3), 483–501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Schulz, V., Siebenborn, M.: Computational comparison of surface metrics for PDE constrained shape optimization. Comput. Methods Appl. Math. 16(3), 485–496 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Schulz, V., Welker, K.: On optimization transfer operators in shape spaces. In: Shape optimization, homogenization and optimal Control, pp. 259–275. Springer (2018)

    Google Scholar 

  • Schulz, V., Siebenborn, M., Welker, K.: Structured inverse modeling in parabolic diffusion problems. SIAM J. Control Optim. 53(6), 3319–3338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Schulz, V., Siebenborn, M., Welker, K.: Efficient PDE constrained shape optimization based on Steklov-Poincaré type metrics. SIAM J. Optim. 26(4), 2800–2819 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Schwab, C., Gittelson, C.: Sparse tensor discretizations of high-dimensional parametric and stochastic pdes. Acta Numer. 20, 291–467 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Shapiro, A., Wardi, Y.: Convergence analysis of gradient descent stochastic algorithms. J. Optim. Theory Appl. 91(2), 439–454 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on stochastic programming: modeling and theory. SIAM, Philadelphia, USA (2009)

    Book  MATH  Google Scholar 

  • Siebenborn, M., Vogel, A.: A shape optimization algorithm for cellular composites. PINT Computing and Visualization in Science (2021). ArXiv:1904.03860

    Google Scholar 

  • Siebenborn, M., Welker, K.: Algorithmic aspects of multigrid methods for optimization in shape spaces. SIAM J. Sci. Comput. 39(6), B1156–B1177 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Sokolowski, J., Zolésio, J.: Introduction to shape optimization. In: Computational mathematics, vol. 16. Springer (1992)

    Google Scholar 

  • Sturm, K.: Lagrange method in shape optimization for non-linear partial differential equations: a material derivative free approach. Technical Report No. 1817, Weierstraß-Institut für angewandte Analysis und Stochastik, Berlin (2013)

    Google Scholar 

  • Sturm, K.: Shape optimization with nonsmooth cost functions: from theory to numerics. SIAM J. Control Optim. 54(6), 3319–3346 (2016). https://doi.org/10.1137/16M1069882

    Article  MathSciNet  MATH  Google Scholar 

  • Wardi, Y.: Stochastic algorithms with armijo stepsizes for minimization of functions. J. Optim. Theory Appl. 64(2), 399–417 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Welker, K.: Efficient PDE constrained shape optimization in shape spaces. Ph.D. thesis, Universität Trier (2016)

    Google Scholar 

  • Welker, K.: Suitable spaces for shape optimization. Appl. Math. Optim. (2021). https://doi.org/10.1007/s00245-021-09788-2

    Book  MATH  Google Scholar 

  • Wirth, B., Rumpf, M.: A nonlinear elastic shape averaging approach. SIAM J. Imag. Sci. 2(3), 800–833 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Wirth, B., Bar, L., Rumpf, M., Sapiro, G.: A continuum mechanical approach to geodesics in shape space. Int. J. Comput. Vis. 93(3), 293–318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Zolésio, J.P.: Control of moving domains, shape stabilization and variational tube formulations. Int. Ser. Numer. Math. 155, 329–382 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Geiersbach .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Geiersbach, C., Loayza-Romero, E., Welker, K. (2022). PDE-Constrained Shape Optimization: Towards Product Shape Spaces and Stochastic Models. In: Chen, K., Schönlieb, CB., Tai, XC., Younces, L. (eds) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-03009-4_120-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03009-4_120-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03009-4

  • Online ISBN: 978-3-030-03009-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics