Skip to main content

Bidirectional Texture Function Modeling

  • Living reference work entry
  • First Online:
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging
  • 38 Accesses

Abstract

An authentic material’s surface reflectance function is a complex function of over 16 physical variables, which are unfeasible both to measure and to mathematically model. The best simplified measurable material texture representation and approximation of this general surface reflectance function is the seven-dimensional bidirectional texture function (BTF). BTF can be simultaneously measured and modeled using state-of-the-art measurement devices and computers and the most advanced mathematical models of visual data. However, such an enormous amount of visual BTF data, measured on the single material sample, inevitably requires state-of-the-art storage, compression, modeling, visualization, and quality verification. Storage technology is still the weak part of computer technology, which lags behind recent data sensing technologies; thus, even for virtual reality correct materials modeling, it is infeasible to use BTF measurements directly. Hence, for visual texture synthesis or analysis applications, efficient mathematical BTF models cannot be avoided. The probabilistic BTF models allow unlimited seamless material texture enlargement, texture restoration, tremendous unbeatable appearance data compression (up to 1:1000 000), and even editing or creating new material appearance data. Simultaneously, they require neither storing actual measurements nor any pixel-wise parametric representation. Unfortunately, there is no single universal BTF model applicable for physically correct modeling of visual properties of all possible BTF textures. Every presented model is better suited for some subspace of possible BTF textures, either natural or artificial. In this contribution, we intend to survey existing mathematical BTF models which allow physically correct modeling and enlargement measured texture under any illumination and viewing conditions while simultaneously offering huge compression ratio relative to natural surface materials optical measurements. Exceptional 3D Markovian or mixture models, which can be either solved analytically or iteratively and quickly synthesized, are presented. Illumination invariants can be derived from some of its recursive statistics and exploited in content-based image retrieval, supervised or unsupervised image recognition. Although our primary goal is physically correct texture synthesis of any unlimited size, the presented models are equally helpful for various texture analytical applications. Their modeling efficiency is demonstrated in several analytical and modeling image applications, in particular, on a (un)supervised image segmentation, bidirectional texture function (BTF) synthesis and compression, and adaptive multispectral and multi-channel image and video restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acton, S., Bovik, A.: Piecewise and local image models for regularized image restoration using cross-validation. IEEE Trans. Image Process. 8(5), 652–665 (1999)

    Article  Google Scholar 

  • Aittala, M., Weyrich, T., Lehtinen, J.: Practical SVBRDF capture in the frequency domain. ACM Trans. Graph. (Proc. SIGGRAPH) 32(4), 110:1– 110:13 (2013)

    Google Scholar 

  • Aittala, M., Weyrich, T., Lehtinen, J.: Two-shot SVBRDF capture for stationary materials. ACM Trans. Graph. 34(4), 110:1–110:13 (2015). https://doi.org/10.1145/2766967

  • Aittala, M., Aila, T., Lehtinen, J.: Reflectance modeling by neural texture synthesis. ACM Trans. Graph. 35(4), 65:1–65:13 (2016). https://doi.org/10.1145/2897824.2925917

  • Anderson, T.W.: The Statistical Analysis of Time Series. Wiley, New York (1971)

    MATH  Google Scholar 

  • Andrews, H.C., Hunt, B.: Digital Image Restoration. Prentice-Hall, Englewood Cliffs (1977)

    Google Scholar 

  • Andrey, P., Tarroux, P.: Unsupervised segmentation of markov random field modeled textured images using selectionist relaxation. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 252–262 (1998)

    Article  Google Scholar 

  • Asmussen, J.C.: Modal analysis based on the random decrement technique: application to civil engineering structures. PhD thesis, University of Aalborg (1997)

    Google Scholar 

  • Aurenhammer, F.: Voronoi diagrams-a survey of a fundamental geometric data structure. ACM Comput. Surv. (CSUR) 23(3), 345–405 (1991)

    Google Scholar 

  • Baril, J., Boubekeur, T., Gioia, P., Schlick, C.: Polynomial wavelet trees for bidirectional texture functions. In: SIGGRAPH’08: ACM SIGGRAPH 2008 talks, p. 1. ACM, New York (2008). https://doi.org/10.1145/1401032.1401072

  • Bennett, J., Khotanzad, A.: Multispectral random field models for synthesis and analysis of color images. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 327–332 (1998)

    Article  Google Scholar 

  • Bennett, J., Khotanzad, A.: Maximum likelihood estimation methods for multispectral random field image models. IEEE Trans. Pattern Anal. Mach. Intell. 21(6), 537–543 (1999)

    Article  Google Scholar 

  • Broemeling, L.D.: Bayesian Analysis of Linear Models. Marcel Dekker, New York (1985)

    MATH  Google Scholar 

  • Burgeth, B., Pizarro, L., Didas, S., Weickert, J.: Coherence-enhancing diffusion filtering for matrix fields. In: Locally Adaptive Filtering in Signal and Image Processing. Springer, Berlin (2009)

    Google Scholar 

  • Cole Jr, H.A.: On-line failure detection and damping measurement of aerospace structures by random decrement signatures. Technical Report TMX-62.041, NASA (1973)

    Google Scholar 

  • Dana, K.J., Nayar, S.K., van Ginneken, B., Koenderink, J.J.: Reflectance and texture of real-world surfaces. In: CVPR, pp. 151–157. IEEE Computer Society (1997)

    Google Scholar 

  • De Bonet, J.: Multiresolution sampling procedure for analysis and synthesis of textured images. In: ACM SIGGRAPH 97, pp. 361–368. ACM Press (1997)

    Google Scholar 

  • Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, pp. 145–156 (2000)

    Google Scholar 

  • Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  • Deschaintre, V., Aittala, M., Durand, F., Drettakis, G., Bousseau, A.: Single-image svbrdf capture with a rendering-aware deep network. ACM Trans. Graph. 37(4), 1–15 (2018). https://doi.org/10.1145/3197517.3201378

    Article  Google Scholar 

  • Dong, J., Chantler, M.: Capture and synthesis of 3D surface texture. In: Texture 2002, vol. 1, pp. 41–45. Heriot-Watt University (2002)

    Google Scholar 

  • Dong, J., Wang, R., Dong, X.: Texture synthesis based on multiple seed-blocks and support vector machines. In: 2010 3rd International Congress on Image and Signal Processing (CISP), vol. 6, pp. 2861–2864 (2010). https://doi.org/10.1109/CISP.2010.5646815

  • Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Fiume, E. (ed.) ACM SIGGRAPH 2001, pp. 341–346. ACM Press (2001). citeseer.nj.nec.com/efros01image.html

    Google Scholar 

  • Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proceedings of International Conference on Computer Vision (2), Corfu, pp. 1033–1038 (1999). citeseer.nj.nec.com/efros99texture.html

    Google Scholar 

  • Felsberg, M.: Adaptive filtering using channel representations. In: Locally Adaptive Filtering in Signal and Image Processing. Springer, Berlin (2009)

    Google Scholar 

  • Filip, J., Haindl, M.: Bidirectional texture function modeling: a state of the art survey. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 1921–1940 (2009). https://doi.org/10.1109/TPAMI.2008.246

    Article  Google Scholar 

  • Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions and bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intel. 6(11), 721–741 (1984)

    Article  MATH  Google Scholar 

  • Gimelfarb, G.: Image Textures and Gibbs Random Fields. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  • Google (2019) Tensorflow. Technical report, Google AI, http://www.tensorflow.org/

  • Grim, J., Haindl, M.: Texture modelling by discrete distribution mixtures. Comput. Stat. Data Anal. 41(3–4), 603–615 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Haindl, M.: Identification of the stochastic differential equation of the type arma. PhD thesis, ÚTIA Czechoslovak Academy of Sciences, Prague (1983)

    Google Scholar 

  • Haindl, M.: Texture synthesis. CWI Q. 4(4), 305–331 (1991)

    MATH  Google Scholar 

  • Haindl, M.: Texture segmentation using recursive Markov random field parameter estimation. In: Bjarne, K.E., Peter, J. (eds.) Proceedings of the 11th Scandinavian Conference on Image Analysis, Pattern Recognition Society of Denmark, Lyngby, pp. 771–776 (1999). http://citeseer.ist.psu.edu/305262.html; http://www.ee.surrey.ac.uk/Research/VSSP/3DVision/virtuous/Publications/Haindl-SCIA99.ps.gz

  • Haindl, M.: Recursive square-root filters. In: Sanfeliu, A., Villanueva, J., Vanrell, M., Alquezar, R., Jain, A., Kittler, J. (eds.) Proceedings of the 15th IAPR International Conference on Pattern Recognition, vol. II, pp. 1018–1021. IEEE Press, Los Alamitos (2000). https://doi.org/10.1109/ICPR.2000.906246

    Google Scholar 

  • Haindl, M.: Recursive model-based colour image restoration. Lect. Notes Comput. Sci. (2396), 617–626 (2002)

    Article  MATH  Google Scholar 

  • Haindl, M., Filip, J.: Fast restoration of colour movie scratches. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) Proceedings of the 16th International Conference on Pattern Recognition, vol. III, pp. 269–272. IEEE Computer Society, Los Alamitos (2002). https://doi.org/10.1109/ICPR.2002.1047846

    Google Scholar 

  • Haindl, M., Filip, J.: Extreme compression and modeling of bidirectional texture function. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1859–1865 (2007). https://doi.org/10.1109/TPAMI.2007.1139

    Article  Google Scholar 

  • Haindl, M., Filip, J.: Visual Texture. Advances in Computer Vision and Pattern Recognition. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4902-6

    Book  Google Scholar 

  • Haindl, M., Hatka, M.: BTF Roller. In: Chantler, M., Drbohlav, O. (eds.) Texture 2005. Proceedings of the 4th International Workshop on Texture Analysis, pp. 89–94. IEEE, Los Alamitos (2005a)

    Google Scholar 

  • Haindl, M., Hatka, M.: A roller – fast sampling-based texture synthesis algorithm. In: Skala, V. (ed.) Proceedings of the 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 93–96. UNION Agency – Science Press, Plzen (2005b)

    Google Scholar 

  • Haindl, M., Havlíček, V.: Multiresolution colour texture synthesis. In: Dobrovodský, K. (ed.) Proceedings of the 7th International Workshop on Robotics in Alpe-Adria-Danube Region, pp. 297–302. ASCO Art, Bratislava (1998)

    Google Scholar 

  • Haindl, M., Havlíček, V.: A multiresolution causal colour texture model. Lect. Notes Comput. Sci. (1876), 114–122 (2000)

    Article  MATH  Google Scholar 

  • Haindl, M., Havlíček, V.: Texture editing using frequency swap strategy. In: Jiang, X., Petkov, N. (eds.) Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, vol. 5702, pp. 1146–1153. Springer (2009). https://doi.org/10.1007/978-3-642-03767-2_139

  • Haindl, M., Havlíček, V.: A compound MRF texture model. In: Proceedings of the 20th International Conference on Pattern Recognition, ICPR 2010, pp. 1792–1795. IEEE Computer Society CPS, Los Alamitos (2010). https://doi.org/10.1109/ICPR.2010.442

  • Haindl, M., Havlíček, V.: A plausible texture enlargement and editing compound markovian model. In: Salerno, E., Cetin, A., Salvetti, O. (eds.) Computational Intelligence for Multimedia Understanding. Lecture Notes in Computer Science, vol. 7252, pp. 138–148. Springer, Berlin/Heidelberg (2012). https://doi.org/10.1007/978-3-642-32436-9_12, http://www.springerlink.com/content/047124j43073m202/

  • Haindl, M., Havlíček, V.: Color Texture Restoration, pp. 13–18. IEEE, Piscataway (2015). https://doi.org/10.1109/ICCIS.2015.7274540

  • Haindl, M., Havlíček, V.: Three-dimensional gaussian mixture texture model. In: The 23rd International Conference on Pattern Recognition (ICPR), pp. 2026–2031. IEEE (2016). https://doi.org/978-1-5090-4846-5/16/%3Ccurrencydollar%3E31.0, http://www.icpr2016.org/site/

  • Haindl, M., Havlíček, M.: A compound moving average bidirectional texture function model. In: Zgrzynowa, A., Choros, K., Sieminski, A. (eds.) Multimedia and Network Information Systems, Advances in Intelligent Systems and Computing, vol. 506, pp. 89–98. Springer International Publishing (2017a). https://doi.org/10.1007/978-3-319-43982-2_8

  • Haindl, M., Havlíček, V.: Two compound random field texture models. In: Beltrán-Castañón, C., Nyström, I., Famili, F. (eds.) 2016 the 21st IberoAmerican Congress on Pattern Recognition (CIARP 2016). Lecture Notes in Computer Science, vol. 10125, pp. 44–51. Springer International Publishing AG, Cham (2017b). https://doi.org/10.1007/978-3-319-52277-7_6

    Google Scholar 

  • Haindl, M., Havlíček, V.: BTF compound texture model with fast iterative non-parametric control field synthesis. In: di Baja, G.S., Gallo, L., Yetongnon, K., Dipanda, A., Castrillon-Santana, M., Chbeir, R. (eds.) Proceedings of the 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS 2018), pp. 98–105. IEEE Computer Society CPS, Los Alamitos (2018a). https://doi.org/10.1109/SITIS.2018.00025

    Google Scholar 

  • Haindl, M., Havlíček, V.: BTF compound texture model with non-parametric control field. In: The 24th International Conference on Pattern Recognition (ICPR 2018), pp. 1151–1156. IEEE (2018b). http://www.icpr2018.org/

  • Haindl, M., Mikeš, S.: Model-based texture segmentation. Lect. Notes Comput. Sci. (3212), 306–313 (2004)

    Article  Google Scholar 

  • Haindl, M., Mikeš, S.: Colour texture segmentation using modelling approach. Lect. Notes Comput. Sci. (3687), 484–491 (2005)

    Article  Google Scholar 

  • Haindl, M., Mikeš, S.: Unsupervised texture segmentation using multispectral modelling approach. In: Tang, Y., Wang, S., Yeung, D., Yan, H., Lorette, G. (eds.) Proceedings of the 18th International Conference on Pattern Recognition, ICPR 2006, vol. II, pp. 203–206. IEEE Computer Society, Los Alamitos (2006). https://doi.org/10.1109/ICPR.2006.1148

    Google Scholar 

  • Haindl, M., Mikeš, S.: Unsupervised texture segmentation using multiple segmenters strategy. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. Lecture Notes in Computer Science, vol. 4472, pp. 210–219. Springer (2007). https://doi.org/10.1007/978-3-540-72523-7_22

  • Haindl, M., Mikeš, S.: Texture segmentation benchmark. In: Lovell, B., Laurendeau, D., Duin, R. (eds.) Proceedings of the 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE Computer Society, Los Alamitos (2008). https://doi.org/10.1109/ICPR.2008.4761118

    Google Scholar 

  • Haindl, M., Šimberová, S.: A multispectral image line reconstruction method. In: Theory & Applications of Image Analysis. Series in Machine Perception and Artificial Intelligence, pp. 306–315. World Scientific, Singapore (1992). https://doi.org/10.1142/9789812797896_0028

  • Haindl, M., Šimberová, S.: A high – resolution radiospectrograph image reconstruction method. Astron. Astrophys. 115(1), 189–193 (1996)

    Google Scholar 

  • Haindl, M., Šimberová, S.: Model-based restoration of short-exposure solar images. In: Abraham, A., Ruiz-del Solar, J., Koppen, M. (eds.) Soft Computing Systems Design, Management and Applications, pp. 697–706. IOS Press, Amsterdam (2002)

    Google Scholar 

  • Haindl, M., Šimberová, S.: Restoration of multitemporal short-exposure astronomical images. Lect. Notes Comput. Sci. (3540), 1037–1046 (2005)

    Article  Google Scholar 

  • Haindl, M., Mikeš, S., Pudil, P.: Unsupervised hierarchical weighted multi-segmenter. In: Benediktsson, J., Kittler, J., Roli, F. (eds.) Lecture Notes in Computer Science. MCS 2009, vol. 5519, pp. 272–282. Springer (2009a). https://doi.org/10.1007/978-3-642-02326-2_28

  • Haindl, M., Mikeš, S., Vácha, P.: Illumination invariant unsupervised segmenter. In: Bayoumi, M. (ed.) IEEE 16th International Conference on Image Processing – ICIP 2009, pp. 4025–4028. IEEE (2009b). https://doi.org/10.1109/ICIP.2009.5413753

  • Haindl, M., Havlíček, V., Grim, J.: Probabilistic mixture-based image modelling. Kybernetika 46(3), 482–500 (2011). http://www.kybernetika.cz/content/2011/3/482/paper.pdf

    MathSciNet  MATH  Google Scholar 

  • Haindl, M., Remeš, V., Havlíček, V.: Potts compound markovian texture model. In: Proceedings of the 21st International Conference on Pattern Recognition, ICPR 2012, pp. 29–32. IEEE Computer Society CPS, Los Alamitos (2012)

    Google Scholar 

  • Haindl, M., Mikeš, S., Kudo, M.: Unsupervised surface reflectance field multi-segmenter. In: Azzopardi, G., Petkov, N. (eds.) Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, vol. 9256, pp. 261–273. Springer International Publishing (2015a). https://doi.org/10.1007/978-3-319-23192-1_22

  • Haindl, M., Remeš, V., Havlíček, V.: BTF Potts Compound Texture Model, vol. 9398, pp. 939807–1–939807–11. SPIE, Bellingham (2015b). https://doi.org/10.1117/12.2077481

  • Han, J.Y., Perlin, K.: Measuring bidirectional texture reflectance with a kaleidoscope. ACM Trans. Graph. 22(3), 741–748 (2003)

    Article  Google Scholar 

  • Heeger, D., Bergen, J.: Pyramid based texture analysis/synthesis. In: ACM SIGGRAPH 95, pp. 229–238. ACM Press (1995)

    Google Scholar 

  • Holroyd, M., Lawrence, J., Zickler, T.: A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance. ACM Trans. Graph. (Proc. SIGGRAPH 2010) (2010). http://www.cs.virginia.edu/~mjh7v/Holroyd10.php

  • Kashyap, R.: Analysis and synthesis of image patterns by spatial interaction models. In: Kanal, L., Rosenfeld, A. (eds.) Progress in Pattern Recognition 1. Elsevier, North-Holland (1981)

    Google Scholar 

  • Kashyap, R.: Image models. In: Young, T.Y., Fu, K.S. (eds.) Handbook of Pattern Recognition and Image Processing. Academic, New York (1986)

    Google Scholar 

  • Koudelka, M.L., Magda, S., Belhumeur, P.N., Kriegman, D.J.: Acquisition, compression, and synthesis of bidirectional texture functions. In: Texture 2003: Third International Workshop on Texture Analysis and Synthesis, Nice, pp. 59–64 (2003)

    Google Scholar 

  • Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, University of Toronto (2009)

    Google Scholar 

  • Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  • Kwatra, V., Schodl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video synthesis using graph cuts. ACM Trans. Graph. 22(3), 277–286 (2003)

    Article  Google Scholar 

  • Levada, A., Mascarenhas, N., Tannus, A.: Pseudolikelihood equations for potts mrf model parameter estimation on higher order neighborhood systems. Geosci. Remote Sens. Lett. IEEE 5(3), 522–526 (2008). https://doi.org/10.1109/LGRS.2008.920909

    Article  Google Scholar 

  • Li, X., Cadzow, J., Wilkes, D., Peters, R., Bodruzzaman II, M.: An efficient two dimensional moving average model for texture analysis and synthesis. In: Proceedings IEEE Southeastcon’92, vol. 1, pp. 392–395. IEEE (1992)

    Google Scholar 

  • Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based sampling. ACM Trans. Graph. (TOG) 20(3), 127–150 (2001)

    Google Scholar 

  • Liu, F., Picard, R.: Periodicity, directionality, and randomness: wold features for image modeling and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18(7), 722–733 (1996). https://doi.org/10.1109/34.506794

    Article  Google Scholar 

  • Loubes, J., Rochet, P.: Regularization with approximated L 2 maximum entropy method. In: Locally Adaptive Filtering in Signal and Image Processing. Springer, Berlin (2009)

    Google Scholar 

  • Manjunath, B., Chellapa, R.: Unsupervised texture segmentation using Markov random field models. IEEE Trans. Pattern Anal. Mach. Intell. 13, 478–482 (1991)

    Article  Google Scholar 

  • Marschner, S.R., Westin, S.H., Arbree, A., Moon, J.T.: Measuring and modeling the appearance of finished wood. ACM Trans. Graph. 24(3), 727–734 (2005)

    Article  Google Scholar 

  • Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th International Conference on Computer Vision, vol. 2, pp. 416–423 (2001). http://www.cs.berkeley.edu/projects/vision/grouping/segbench/

  • Matuszak, M., Schreiber, T.: Locally specified polygonal Markov fields for image segmentation. In: Locally Adaptive Filtering in Signal and Image Processing. Springer, Berlin (2009)

    Google Scholar 

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  MATH  Google Scholar 

  • Mikeš, S., Haindl, M.: View dependent surface material recognition. In: Bebis, G., Boyle, R., Parvin, B., Koračin, D., Ushizima, D., Chai, S., Sueda, S., Lin, X., Lu, A., Thalmann, D., Wang, C., Xu, P. (eds.) 14th International Symposium on Visual Computing (ISVC 2019). Lecture Notes in Computer Science, vol. 11844, pp. 156–167. Springer Nature Switzerland AG (2019). https://doi.org/10.1007/978-3-030-33720-9_12, https://www.isvc.net/

  • Müller, G., Meseth, J., Klein, R.: Compression and real-time rendering of measured BTFs using local PCA. In: Vision, Modeling and Visualisation 2003, pp. 271–280 (2003)

    Google Scholar 

  • Müller, G., Meseth, J., Sattler, M., Sarlette, R., Klein, R.: Acquisition, synthesis and rendering of bidirectional texture functions. In: Eurographics 2004, STAR – State of The Art Report, Eurographics Association, pp. 69–94 (2004)

    Google Scholar 

  • Neubeck, A., Zalesny, A., Gool, L.: 3D texture reconstruction from extensive BTF data. In: Chantler, M., Drbohlav, O. (eds.) Texture 2005. Heriot-Watt University, Edinburgh (2005)

    Google Scholar 

  • Ngan, A., Durand, F.: Statistical acquisition of texture appearance. In: Eurographics Symposium on Rendering, Eurographics (2006)

    Google Scholar 

  • Ojala, T., Maenpaa, T., Pietikainen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex: new framework for empirical evaluation of texture analysis algorithms. In: International Conference on Pattern Recognition, pp. I:701–706 (2002)

    Google Scholar 

  • Paget, R., Longstaff, I.D.: Texture synthesis via a noncausal nonparametric multiscale markov random field. IEEE Trans. Image Process. 7(8), 925–932 (1998)

    Article  Google Scholar 

  • Panjwani, D., Healey, G.: Markov random field models for unsupervised segmentation of textured color images. IEEE Trans. Pattern Anal. Mach. Intell. 17(10), 939–954 (1995)

    Article  Google Scholar 

  • Pattanayak, S.: Pro Deep Learning with TensorFlow. Apress (2017). https://doi.org/10.1007/978-1-4842-3096-1

  • Polzehl, J., Tabelow, K.: Structural adaptive smoothing: principles and applications in imaging. In: Locally Adaptive Filtering in Signal and Image Processing. Springer, Berlin (2009)

    Google Scholar 

  • Portilla, J., Simoncelli, E.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40(1), 49–71 (2000)

    Article  MATH  Google Scholar 

  • Potts, R., Domb, C.: Some generalized order-disorder transformations. In: Proceedings of the Cambridge Philosophical Society, vol. 48, pp. 106–109 (1952)

    MathSciNet  MATH  Google Scholar 

  • Praun, E., Finkelstein, A., Hoppe, H.: Lapped textures. In: ACM SIGGRAPH 2000, pp. 465–470 (2000)

    Google Scholar 

  • Rainer, G., Ghosh, A., Jakob, W., Weyrich, T.: Unified neural encoding of BTFs. In: Computer Graphics Forum, vol. 39, pp. 167–178. Wiley Online Library (2020)

    Google Scholar 

  • Reed, T.R., du Buf, J.M.H.: A review of recent texture segmentation and feature extraction techniques. CVGIP–Image Underst. 57(3), 359–372 (1993)

    Article  Google Scholar 

  • Ren, P., Wang, J., Snyder, J., Tong, X., Guo, B.: Pocket reflectometry. ACM Trans. Graph. (Proc. SIGGRAPH) 30(4) (2011). https://doi.org/10.1145/2010324.1964940

  • Ruiters, R., Schwartz, C., Klein, R.: Example-based interpolation and synthesis of bidirectional texture functions. In: Computer Graphics Forum, vol. 32, pp. 361–370. Wiley Online Library (2013)

    Google Scholar 

  • Sattler, M., Sarlette, R., Klein, R.: Efficient and realistic visualization of cloth. In: Eurographics Symposium on Rendering (2003)

    Google Scholar 

  • Schwartz, C., Sarlette, R., Weinmann, M., Rump, M., Klein, R.: Design and implementation of practical bidirectional texture function measurement devices focusing on the developments at the university of bonn. Sensors 14(5), 7753–7819 (2014). https://doi.org/10.3390/s140507753. http://www.mdpi.com/1424-8220/14/5/7753

  • Sharma, M., Singh, S.: Minerva scene analysis benchmark. In: Seventh Australian and New Zealand Intelligent Information Systems Conference, pp. 231–235. IEEE (2001)

    Google Scholar 

  • Soler, C., Cani, M., Angelidis, A.: Hierarchical pattern mapping. ACM Trans. Graph. 21(3), 673–680 (2002)

    Article  Google Scholar 

  • Swendsen, R.H., Wang, J.S.: Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58(2), 86–88 (1987). https://doi.org/10.1103/PhysRevLett.58.86

    Article  Google Scholar 

  • Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., Shum, H.Y.: Synthesis of bidirectional texture functions on arbitrary surfaces. ACM Trans. Graph. (TOG) 21(3), 665–672 (2002)

    Google Scholar 

  • Tsai, Y.T., Shih, Z.C.: K-clustered tensor approximation: a sparse multilinear model for real-time rendering. ACM Trans. Graph. 31(3), 19:1–19:17 (2012). https://doi.org/10.1145/2167076.2167077

  • Tsai, Y.T., Fang, K.L., Lin, W.C., Shih, Z.C.: Modeling bidirectional texture functions with multivariate spherical radial basis functions. Pattern Anal. Mach. Intell. IEEE Trans. 33(7), 1356 –1369 (2011). https://doi.org/10.1109/TPAMI.2010.211

    Article  Google Scholar 

  • Vacha, P., Haindl, M.: Image retrieval measures based on illumination invariant textural mrf features. In: CIVR’07: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 448–454. ACM Press, New York (2007). https://doi.org/10.1145/1282280.1282346

  • Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62(1–2), 61–81 (2005)

    Article  Google Scholar 

  • Wang, J., Dana, K.: Relief texture from specularities. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 446–457 (2006)

    Article  Google Scholar 

  • Wei, L., Levoy, M.: Texture synthesis using tree-structure vector quantization. In: ACM SIGGRAPH 2000, pp. 479–488. ACM Press/Addison Wesley/Longman (2000). citeseer.nj.nec.com/wei01texture.html

    Google Scholar 

  • Wei, L., Levoy, M.: Texture synthesis over arbitrary manifold surfaces. In: SIGGRAPH 2001, pp. 355–360. ACM (2001)

    Google Scholar 

  • Wu, F.: (1982) The Potts model. Rev. Modern Phys. 54(1), 235–268

    Article  Google Scholar 

  • Wu, H., Dorsey, J., Rushmeier, H.: A sparse parametric mixture model for BTF compression, editing and rendering. Comput. Graph. Forum 30(2), 465–473 (2011)

    Article  Google Scholar 

  • Xu, Y., Guo, B., Shum, H.: Chaos mosaic: fast and memory efficient texture synthesis. Technical Report MSR-TR-2000-32, Redmont (2000)

    Google Scholar 

  • Zelinka, S., Garland, M.: Towards real-time texture synthesis with the jump map. In: 13th European Workshop on Rendering, p. 99104 (2002)

    Google Scholar 

  • Zelinka, S., Garland, M.: Interactive texture synthesis on surfaces using jump maps. In: Christensen, P., Cohen-Or, D. (eds.) 14th European Workshop on Rendering, Eurographics (2003)

    Google Scholar 

  • Zhang, Y.J.: Evaluation and comparison of different segmentation algorithms. Pattern Recogn. Lett. 18, 963–974 (1997)

    Article  Google Scholar 

  • Zhang, J.D., Zhou, K., Velho ea, L.: Synthesis of progressively-variant textures on arbitrary surfaces. ACM Trans. Graph. 22(3), 295–302 (2003)

    Google Scholar 

  • Zhu, S., Liu, X., Wu, Y.: Exploring texture ensembles by efficient Markov Chain Monte Carlo – toward a “trichromacy” theory of texture. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 554–569 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The Czech Science Foundation Project GAČR 19-12340S supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Haindl .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Haindl, M. (2022). Bidirectional Texture Function Modeling. In: Chen, K., Schönlieb, CB., Tai, XC., Younces, L. (eds) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-03009-4_103-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03009-4_103-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03009-4

  • Online ISBN: 978-3-030-03009-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics