Advertisement

Mammalian Phylogenetics: A Short Overview of Recent Advances

Reference work entry
Part of the Handbook of the Mammals of Europe book series (HDBME)

Abstract

This chapter summarizes our present understanding of the phylogenetic relationships of Mammalia, particularly those within Marsupialia and Placentalia. The last 20 or so years have seen the burgeoning of molecular phylogenetics and the transition from phylogenetics to phylogenomics, with new and deeper insights into mammalian relationships. While most of the taxa traditionally classified as “orders” have stood the test of time, the “interordinal” relationships have benefited immensely from the new methodology. This is most obvious for placental mammals where four high-ranking taxa have emerged beyond reasonable doubt: Afrotheria, Xenarthra, Euarchontoglires, and Laurasiatheria. The root of the placental tree, however, is still elusive, with a number of competing hypotheses still being discussed. The most likely topology seems to be a most basal split between Atlantogenata (= Afrotheria + Xenarthra) and Boreoeutheria (= Euarchontoglires + Laurasiatheria). While Boreoeutheria is well supported, this is much less the case for Atlantogenata. The position of Scandentia (tree shrews) and Chiroptera (bats) within Euarchontoglires and Laurasiatheria, respectively, is also still uncertain. Another heatedly debated issue is the age of origination and diversification of the placental mammals, particularly with respect to the K-Pg boundary ca. 66 mya. Molecular datings and the fossil record are still at odds with one another, but a reconciliation seems at least feasible.

Keywords

K-Pg Boundary Marsupialia Molecular Phylogenetics Monotremata Placentalia 

Notes

Acknowledgments

I would like to thank Vera Weisbecker from the University of Queensland in Brisbane, Australia, for a constructive review of an earlier version of this chapter and Kriemhild Repp from the Natural History Museum Vienna for drawing the phylogenetic trees.

References

  1. Angielczyk KD, Kammerer CF (2018) Non-mammalian synapsids: the deep roots of the mammalian family tree. In: Zachos FE, Asher RJ (eds) Mammalian evolution, diversity and systematics. Handbook of zoology, Mammalia. de Gruyter, Berlin, pp 117–198Google Scholar
  2. Archibald JD (2011) Extinction and radiation. How the fall of dinosaurs led to the rise of mammals. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  3. Archibald JD, Deutschman DH (2001) Quantitative analysis of the timing of the origin and diversification of extant placental orders. J Mamm Evol 8:107–124Google Scholar
  4. Asher RJ (2018) Diversity and relationships within crown Mammalia. In: Zachos FE, Asher RJ (eds) Mammalian evolution, diversity and systematics. Handbook of zoology, Mammalia. de Gruyter, Berlin, pp 301–352Google Scholar
  5. Asher RJ, Helgen KM (2010) Nomenclature and placental mammal phylogeny. BMC Evol Biol 10:102PubMedPubMedCentralGoogle Scholar
  6. Asher RJ, Horovitz I, Sánchez-Villagra MR (2004) First combined cladistics analysis of marsupial mammal interrelationships. Mol Phylogenet Evol 33:240–250PubMedGoogle Scholar
  7. Asher RJ, Meng J, Wible JR, McKenna MC, Rougier GW, Dashzeveg D, Novacek MJ (2005) Stem Lagomorpha and the antiquity of Glires. Science 307:1091–1094PubMedGoogle Scholar
  8. Asher RJ, Bennett N, Lehmann T (2009) The new framework for understanding placental mammal evolution. BioEssays 31:853–864PubMedGoogle Scholar
  9. Averianov AO, Archibald D (2016) New evidence on the stem placental mammal Paranyctoides from the Upper Cretaceous of Uzbekistan. Palaeontol Pol 67:25–33Google Scholar
  10. Baum DA, Smith SD, Donovan SSS (2005) The tree-thinking challenge. Science 310:979–980PubMedGoogle Scholar
  11. Beck RMD, Travouillon KJ, Aplin KP, Godthelp H, Archer M (2014) The osteology and systematics of the enigmatic Australian Oligo-Miocene metatherian Yalkaparidon (Yalkaparidontidae; Yalkaparidontia; ?Australidelphia; Marsupialia). J Mamm Evol 21:127–172Google Scholar
  12. Begun DR (1992) Dryopithecus crusafonti sp. nov., a new Miocene hominoid species from Can Ponsic (northeastern Spain). Am J Phys Anthropol 87:291–309Google Scholar
  13. Benton MJ (2010) The origins of modern biodiversity on land. Philos Trans R Soc B 365:3667–3679Google Scholar
  14. Bi S, Zheng X, Wang X, Cignetti NE, Yang S, Wible JR (2018) An Early Cretaceous eutherian and the placental-marsupial dichotomy. Nature 558:390–395PubMedGoogle Scholar
  15. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512PubMedGoogle Scholar
  16. Böhme M, Spassov N, Fuss J, Tröscher A, Deane AS, Prieto J, Kirscher U, Lechner T, Begun DR, (2019) A new Miocene ape and locomotion in the ancestor of great apes and humans. Nature 575 (7783):489–493Google Scholar
  17. Bond M, Tejedor MF, Campbell KE Jr, Chornogubsky L, Novo N, Goin F (2015) Eocene primates of South America and the African origins of New World monkeys. Nature 520:538–541PubMedGoogle Scholar
  18. Brace S, Thomas JA, Dalén L, Burger J, MacPhee RDE, Barnes I, Turvey ST (2016) Evolutionary history of the Nesophontidae, the last unplaced recent mammal family. Mol Biol Evol 33:3095–3103PubMedGoogle Scholar
  19. Buckley M (2013) A molecular phylogeny of Plesiorycteropus reassigns the extinct mammalian order ‘Bibymalagasia’. PLoS One 8:e59614PubMedPubMedCentralGoogle Scholar
  20. Burgin CJ, Colella JP, Kahn PL, Upham NS (2018) How many species of mammals are there? J Mammal 99:1–14Google Scholar
  21. Chen M-Y, Liang D, Zhang P (2017) Phylogenomic resolution of the phylogeny of Laurasiatherian mammals: exploring phylogenetic signals within coding and noncoding sequences. Genome Biol Evol 9:1998–2012PubMedPubMedCentralGoogle Scholar
  22. Cooper A, Fortey R (1998) Evolutionary explosions and the phylogenetic fuse. Trends Ecol Evol 13:151–156PubMedGoogle Scholar
  23. Cunningham JA, Liu AG, Bengtson S, Donoghue PCJ (2017) The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39:1–12PubMedGoogle Scholar
  24. dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PCJ, Yang Z (2012) Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc R Soc B 279:3491–3500PubMedGoogle Scholar
  25. dos Reis M, Donoghue PCJ, Yang Z (2014) Neither phylogenomic nor palaeontological data support a Palaeocene origin of placental mammals. Biol Lett 10:20131003PubMedPubMedCentralGoogle Scholar
  26. dos Reis M, Gunnell GF, Barba-Montoya J, Wilkins A, Yang Z, Yoder AD (2018) Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies on divergence time estimation: primates as a test case. Syst Biol 67:594–615PubMedPubMedCentralGoogle Scholar
  27. Duchêne DA, Bragg JG, Duchêne S, Neaves LE, Potter S, Moritz C, Johnson RN, Ho SYW, Eldridge MDB (2018) Analysis of phylogenomic tree space resolves relationships among marsupial families. Syst Biol 67:400–412PubMedGoogle Scholar
  28. Eldridge MDB, Beck RMD, Croft DA, Travouillon KJ, Fox BJ, (2019) An emerging consensus in the evolution, phylogeny, and systematics of marsupials and their fossil relatives (Metatheria). Journal of Mammalogy 100(3):802–837Google Scholar
  29. Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC (2017) Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements. Genome Biol Evol 9:2308–2321PubMedPubMedCentralGoogle Scholar
  30. Foley NM, Springer MS, Teeling EC (2016) Mammal madness: is the mammal tree of life not yet resolved? Philos Trans R Soc B 371:20150140Google Scholar
  31. Gaudin TJ, Emry RJ, Wible JR (2009) The phylogeny of living and extinct pangolins (Mammalia, Pholidota) and associated taxa: a morphology based analysis. J Mamm Evol 16:235–305Google Scholar
  32. Geisler JH, Uhen MD (2005) Phylogenetic relationships of extinct cetartiodactyls: results of simultaneous analyses of molecular, morphological, and stratigraphic data. J Mamm Evol 12:145–160Google Scholar
  33. Geisler JH, Theodor JM, Uhen MD, Foss SE (2007) Phylogenetic relationships of cetaceans to terrestrial artiodactyls. In: Prothero DR, Foss SE (eds) The evolution of artiodactyls. The Johns Hopkins University Press, Baltimore, pp 19–31Google Scholar
  34. Goswami A, Prasad GV, Upchurch P, Boyer DM, Seiffert ER, Verma O, Gheerbrant E, Flynn JJ (2011) A radiation of arboreal basal eutherian mammals beginning in the Late Cretaceous of India. Proc Natl Acad Sci 108:16333–16338PubMedGoogle Scholar
  35. Gregory WK (1910) The orders of mammals. Bull Am Mus Nat Hist 27:1–524Google Scholar
  36. Gregory WK (1947) The monotremes and the palimpsest theory. Bull Am Mus Nat Hist 88:1–52Google Scholar
  37. Halliday TJD, Upchurch P, Goswami A (2017) Resolving the relationships of Paleocene placental mammals. Biol Rev 92:521–550PubMedGoogle Scholar
  38. Halliday TJD, Mario dos Reis, Tamuri AU, Ferguson-Gow H, Yang Z, Goswami A (2019) Rapid morphological evolution in placental mammals post-dates the origin of the crown group. Proceedings of the Royal Society B: Biological Sciences 286(1898):20182418Google Scholar
  39. Horovitz I, Sánchez-Villagra MR (2003) A morphological analysis of marsupial mammal higher-level phylogenetic relationships. Cladistics 19:181–212Google Scholar
  40. Janke A, Magnell O, Wieczorek G, Westerman M, Arnason U (2002) Phylogenetic analysis of 18S rRNA and the mitochondrial genomes of the wombat, Vombatus ursinus, and the spiny anteater, Tachyglossus aculeatus: increased support for the Marsupionta hypothesis. J Mol Evol 54:71–80PubMedGoogle Scholar
  41. Kullberg M, Hallström BM, Arnason U, Janke A (2008) Phylogenetic analysis of 1.5 Mpb and platypus EST data refute the Marsupionta hypothesis and unequivocally support Monotremata as sister group to Marsupialia/Placentalia. Zool Scr 37:115–127Google Scholar
  42. Liu L, Zhan J, Rheindt FE, Lei F, Qu Y, Wang Y, Zhang Y, Sullivan C, Nie W, Wang J, Yang F, Chen J, Edwards SV, Meng J, Wu S (2017) Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary. Proc Natl Acad Sci U S A 114:E7282–E7290PubMedPubMedCentralGoogle Scholar
  43. Luo Z-X, Yuan C-Y, Meng Q-J, Ji Q (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476:442–445PubMedGoogle Scholar
  44. Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW, Adkins R, Amrine HM, Stanhope MJ, de Jong WW, Springer MS (2001) Parallel adaptive radiations in two major clades of placental mammals. Nature 409:610–614PubMedGoogle Scholar
  45. Martin T (2018) Mesozoic mammals. In: Zachos FE, Asher RJ (eds) Mammalian evolution, diversity and systematics. Handbook of zoology, Mammalia. de Gruyter, Berlin, pp 199–299Google Scholar
  46. May-Collado LJ, Kilpatrick CW, Agnarsson I (2015) Mammals from “down under”: a multi-gene species-level phylogeny of marsupial mammals (Mammalia, Metatheria). PeerJ 3:e805PubMedPubMedCentralGoogle Scholar
  47. Meredith RW, Westerman M, Case JA, Springer MS (2008) A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes. J Mamm Evol 15:1–36Google Scholar
  48. Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simão TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JL, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ (2011) Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334:521–524PubMedGoogle Scholar
  49. Mitchell KJ, Pratt RC, Watson LN, Gibb GC, Llamas B, Kasper M, Edson J, Hopwood B, Male D, Armstrong KN, Meyer M, Hofreiter M, Austin J, Donnellan SC, Lee MSY, Phillips MJ, Cooper A (2014) Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Mol Biol Evol 31:2322–2330PubMedGoogle Scholar
  50. Morgan CC, Foster PG, Webb AE, Pisani D, McInerney JO, O’Connell MJ (2013) Heterogenous models place the root of the placental mammal phylogeny. Mol Biol Evol 30:2145–2156PubMedPubMedCentralGoogle Scholar
  51. Moyà-Solà S, Köhler M, Alba DM, Casanovas-Vilar I, Galindo J (2004) Pierolapithecus catalaunicus, a new Middle Miocene great ape from Spain. Science 306:1339–1344PubMedGoogle Scholar
  52. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618PubMedGoogle Scholar
  53. Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001b) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351PubMedGoogle Scholar
  54. Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W (2007) Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17:413–421PubMedPubMedCentralGoogle Scholar
  55. Nilsson MA, Arnason U, Spencer PBS, Janke A (2004) Marsupial relationships and a timeline for marsupial radiation in South Gondwana. Gene 340:189–196PubMedGoogle Scholar
  56. Nishihara H, Hasegawa M, Okada N (2006) Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc Natl Acad Sci 103:9929–9934PubMedGoogle Scholar
  57. Nishihara H, Maruyama S, Okada N (2009) Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. Proc Natl Acad Sci 106:5235–5240PubMedGoogle Scholar
  58. Novacek MJ (1992) Mammalian phylogeny: shaking the tree. Nature 356:121–125PubMedGoogle Scholar
  59. O’Leary MA, Gatesy J (2008) Impact of increased character sampling on the phylogeny of Cetartiodactyla (Mammalia): combined analysis including fossils. Cladistics 24:397–442Google Scholar
  60. O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z-X, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013a) The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339:662–667PubMedGoogle Scholar
  61. O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z-X, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013b) Response to comment on “The placental mammal ancestor and the post-K-Pg radiation of placentals”. Science 341:613PubMedGoogle Scholar
  62. Omland KE, Cook LG, Crisp MD (2008) Tree thinking for all biology: the problem with reading phylogenies as ladders of progress. BioEssays 30:854–867PubMedGoogle Scholar
  63. Phillips MJ (2016) Geomolecular dating and the origin of placental mammals. Syst Biol 65:546–557PubMedGoogle Scholar
  64. Phillips MJ, Fruciano C (2018) The soft explosive model of placental mammal evolution. BMC Evol Biol 18:104PubMedPubMedCentralGoogle Scholar
  65. Pires MM, Rankin BD, Silvestro D, Quental TB (2018) Diversification dynamics of mammalian clades during the K-Pg mass extinction. Biol Lett 14:20180458PubMedPubMedCentralGoogle Scholar
  66. Price SA, Bininda-Emonds ORP, Gittleman JL (2005) A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biol Rev 80:445–473PubMedGoogle Scholar
  67. Puttick MN, Thomas GH, Benton MJ (2016) Dating placentalia: morphological clocks fail to close the molecular fossil gap. Evolution 70:873–886PubMedPubMedCentralGoogle Scholar
  68. Rigato E, Minelli A (2013) The great chain of being is still here. Evol Educ Outreach 6:18Google Scholar
  69. Romiguier J, Ranwez V, Delsuc F, Galtier N, Douzery EJP (2013) Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals. Mol Biol Evol 30:2134–2144PubMedGoogle Scholar
  70. Rose KD (1999) Eurotamandua and Palaeanodonta: convergent or related? Paläontol Z 73:395–401Google Scholar
  71. Sánchez-Villagra MR (2013) Why are there fewer marsupials than placentals? On the relevance of geography and physiology to evolutionary patterns of mammalian diversity and disparity. J Mamm Evol 20:279–290Google Scholar
  72. Sánchez-Villagra MR, Narita Y, Kuratani S (2007) Thoracolumbar vertebral number: the first skeletal synapomorphy for afrotherian mammals. Syst Biodivers 5:1–7Google Scholar
  73. Scally M, Madsen O, Douady CJ, de Jong WW, Stanhope MJ, Springer MS (2001) Molecular evidence for the major clades of placental mammals. J Mamm Evol 8:239–277Google Scholar
  74. Scotese CR (2001) Atlas of earth history. University of Texas at Arlington. Department of Geology. PALEOMAP ProjectGoogle Scholar
  75. Simpson GG (1945) The principles of classification and a classification of mammals. Bull Am Mus Nat Hist 85.:xvi +:1–350Google Scholar
  76. Springer MS, Cleven GC, Madsen O, de Jong WW, Waddell VG, Amrine HM, Stanhope MJ (1997) Endemic African mammals shake the phylogenetic tree. Nature 388:61–64PubMedGoogle Scholar
  77. Springer MS, Stanhope MJ, Madsen O, de Jong WW (2004) Molecules consolidate the placental mammal tree. Trends Ecol Evol 19:430–438PubMedGoogle Scholar
  78. Springer MS, Meredith RW, Teeling EC, Murphy WJ (2013) Technical comment on “The placental mammal ancestor and the post-K-Pg radiation of placentals”. Science 341:613PubMedGoogle Scholar
  79. Springer MS, Emerling CA, Meredith RW, Janečka JE, Eizirik E, Murphy WJ (2017) Waking the undead: implications of a soft explosive model for the timing of placental mammal diversification. Mol Phylogenet Evol 106:86–102PubMedGoogle Scholar
  80. Stanhope MJ, Waddell VG, Madsen O, de Jong WW, Hedges SB, Cleven GC, Kao D, Springer MS (1998) Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proc Natl Acad Sci 95:9967–9972PubMedGoogle Scholar
  81. Storch G (1981) Eurotamandua joresi, ein Myrmecophagide aus dem Eozän der “Grube Messel” bei Darmstadt (Mammalia, Xenarthra). Senckenb Lethaea 61:247–289Google Scholar
  82. Tarver JE, dos Reis M, Mirarab S, Moran RJ, Parker S, O’Reilly JE, King BL, O’Connell MJ, Asher RJ, Warnow T, Peterson KJ, Donoghue PCJ, Pisani D (2016) The interrelationships of placental mammals and the limits of phylogenetic inference. Genome Biol Evol 8:330–344PubMedPubMedCentralGoogle Scholar
  83. Teeling EC, Hedges SB (2013) Making the impossible possible: rooting the tree of placental mammals. Mol Biol Evol 30:1999–2000PubMedGoogle Scholar
  84. Upham NS, Esselstyn JA, Jetz W (2019) Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biology 17(12):e3000494Google Scholar
  85. Weisbecker V (2015) Are monotremes primitive and marsupials inferior? In: Klieve A, Hogan L, Johnston S, Murray P (eds) Marsupials and monotremes. Nature’s enigmatic mammals. Nova Science Publisher, New York, pp 397–411Google Scholar
  86. Wible JR, Rougier GW, Novacek MJ, Asher RJ (2007) Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature 447:1003–1006PubMedGoogle Scholar
  87. Wildman DE, Uddin M, Opazo JC, Liu G, Lefort V, Guindon S, Gascuel O, Grossman LI, Romero R, Goodman M (2007) Genomics, biogeography, and the diversification of placental mammals. Proc Natl Acad Sci 104:14395–14400PubMedGoogle Scholar
  88. Wilson GP, Ekdale EG, Hoganson JW, Calede JJ, Linden AV (2016) A large carnivorous mammal from the Late Cretaceous and the North American origin of marsupials. Nat Commun 7:13734PubMedPubMedCentralGoogle Scholar
  89. Wu J, Yonezawa T, Kishino H (2017) Rates of molecular evolution suggest natural history of life history traits and a post-K-Pg nocturnal bottleneck of placentals. Curr Biol 27:3025–3033PubMedGoogle Scholar
  90. Zachos FE (2011) Linnean ranks, temporal banding and time-clipping: why not slaughter the sacred cow? Biol J Linn Soc 103:732–734Google Scholar
  91. Zachos FE (2016) Tree thinking and species delimitation: guidelines for taxonomy and phylogenetic terminology. Mamm Biol 81:185–188Google Scholar
  92. Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z, Baker ML, Zhao W, Tachedjian M, Zhu Y, Zhou P, Jiang X, Ng J, Yang L, Wu L, Xiao J, Feng Y, Chen Y, Sun X, Zhang Y, Marsh GA, Crameri G, Broder CC, Frey KG, Wang L-F, Wang J (2013) Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339:456–460PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Mammal CollectionNatural History Museum ViennaViennaAustria
  2. 2.Department of Evolutionary BiologyUniversity of ViennaViennaAustria
  3. 3.Department of GeneticsUniversity of the Free StateBloemfonteinSouth Africa

Section editors and affiliations

  • Klaus Hackländer
    • 1
  • Frank E. Zachos
    • 2
    • 3
    • 4
  1. 1.Department of Integrative Biology and Biodiversity ResearchUniversity of Natural Resources and Life Sciences, Vienna (BOKU)ViennaAustria
  2. 2.Mammal CollectionNatural History Museum ViennaViennaAustria
  3. 3.Department of GeneticsUniversity of the Free StateBloemfonteinSouth Africa
  4. 4.Department of Integrative ZoologyUniversity of ViennaViennaAustria

Personalised recommendations